EL HOMBRE QUE
CALCULABA
Malba Tahan*
Índice
Pág.
Introducción. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Dedicatoria . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
CAPITULO I
En el que se narran las divertidas
circunstancias de mi encuentro con
un singular viajero camino
de la ciudad de Samarra, en la Ruta de
Bagdad. Qué hacía el viajero
y cuáles eran sus palabras. . . . . . . . . . . . .
6
CAPITULO II
Donde Beremiz Samir, el
Hombre que Calculaba, cuenta la historia de
su vida. Cómo quedé
informado de los cálculos prodigiosos que
realizaba y de cómo vinimos
a convertirnos en compañeros de jornada.
7
CAPITULO
III
Donde se narra la singular
aventura de los treinta y cinco camellos que
tenían que ser repartidos
entre tres hermanos árabes. Cómo Beremiz
Samir, el Hombre que
Calculaba, efectuó un reparto que parecía
imposible, dejando
plenamente satisfechos a los tres querellantes. El
lucro inesperado que
obtuvimos con la transacción. . . . . . . . . . . . . . . . .
10
CAPITULO IV
De nuestro encuentro con un
rico jeque, malherido y hambriento. La
propuesta que nos hizo sobre
los ocho panes que llevábamos, y cómo
se resolvió, de manera
imprevista, el reparto equitativo de las ocho
monedas que recibimos en
pago. Las tres divisiones de Beremiz: la
división simple, la división
cierta y la división perfecta. Elogio que un
ilustre visir dirigió al
Hombre que Calculaba. . . . . . . . . . . . . . . . . . . . . . . 13
CAPITULO V
De los prodigiosos cálculos
efectuados por Beremiz Samir, camino de
la hostería “El Anade Dorado”,
para determinar el número exacto de
palabras pronunciadas en el
transcurso de nuestro viaje y cuál el
promedio de las pronunciadas
por minuto. Donde el Hombre que
Calculaba resuelve un
problema y queda establecida la deuda de un
joyero. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .
17
CAPITULO VI
De lo que sucedió durante
nuestra visita al visir Maluf. De nuestro
encuentro con el poeta
Iezid, que no creía en los prodigios del cálculo.
El Hombre que Calculaba
cuenta de manera original los camellos de
una numerosa cáfila. La edad
de la novia y un camello sin oreja.
Beremiz descubre la “amistad
cuadrática” y habla del rey Salomón. . . . .
22
CAPITULO
VII
De nuestra visita al zoco de
los mercaderes. Beremiz y el turbante azul.
El caso de “los cuatro
cuatros”. El problema de los cincuenta dinares.
Beremiz resuelve el problema
y recibe un bellísimo obsequio. . . . . . . . .
27
CAPITULO VIII
Donde Beremiz diserta sobre
las formas geométricas. De nuestro feliz
encuentro con el jeque Salem
Nassair y con sus amigos los criadores
de ovejas. Beremiz resuelve
el problema de las veintiuna vasijas y otro
que causa el asombro de los
mercaderes. Cómo se explica la
desaparición de un dinar de
una cuenta de treinta. . . . . . . . . . . . . . . . . .
Pág.
33
CAPITULO IX
Donde se narran las
circunstancias y los motivos de la honrosa visita
que nuestro amigo el jeque
Iezid, el Poeta, se dignara hacernos.
Extraña consecuencia de las
previsiones de un astrólogo. La mujer y
las Matemáticas. Beremiz es
invitado a enseñar Matemáticas a una
hermosa joven. Situación
singular de la misteriosa alumna. Beremiz
habla de su amigo y maestro,
el sabio Nô-Elim. . . . . . . . . . . . . . . . . . . .
41
CAPITULO X
De nuestra llegada al
Palacio de Iezid. El rencoroso Tara-Tir desconfía
de los cálculos de Beremiz.
Los pájaros cautivos y los números
perfectos. El Hombre que
Calculaba exalta la caridad del jeque. De una
melodía que llegó a nuestros
oídos, llena de melancolía y añoranza
como las endechas de un
ruiseñor solitario. . . . . . . . . . . . . . . . . . . . . . .
45
CAPITULO XI
De cómo inició Beremiz sus lecciones
de Matemáticas. Una frase de
Platón. La Unidad es Dios.
¿Qué es medir? Las partes de la
Matemática. La Aritmética y
los Números. El Álgebra y las relaciones.
La Geometría y las formas.
La Mecánica y la Astronomía. Un sueño del
rey Asad-Abu-Carib. La “alumna
invisible” eleva una oración a Allah.
52
CAPITULO
XII
En el que Beremiz revela
gran interés por el juego de la comba. La
curva del Morazán y las
arañas. Pitágoras y el círculo. Nuestro
encuentro con Harim Namir.
El problema de los sesenta melones.
Cómo el vequil perdió la
apuesta. La voz del muezin ciego llama a los
creyentes a la oración del
mogreb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
CAPITULO
XIII
Que trata de nuestra visita
al palacio del Califa y de la audiencia que se
dignó concedernos. De los
poetas y la amistad. De la amistad entre los
hombres y de la amistad
entre los números. El Hombre que Calculaba
es elogiado por el Califa de
Bagdad. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
CAPITULO
XIV
De cuanto nos sucediera en
el Salón del Trono. Los músicos y las
bailarinas gemelas. Como
Beremiz pudo reconocer a Iclimia y Tabessa.
Un visir envidioso critica a
Beremiz. El Hombre que Calculaba elogia a
los teóricos y a los
soñadores. El rey proclama la victoria de la teoría
sobre el inmediatismo
vulgar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
CAPITULO XV
Nuredin, el enviado, regresa
al palacio del Califa. La información que
obtuviera de un imán. Como
vivía el pobre calígrafo. El cuadro lleno de
números y el tablero de
ajedrez. Beremiz habla sobre los cuadrados
mágicos. La consulta del
ulema. El califa pide a Beremiz que narre la
leyenda del “Juego del
ajedrez”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pág.
73
CAPITULO
XVI
Donde se cuenta la famosa
leyenda sobre el origen del juego del
ajedrez, que Beremiz Samir,
el Hombre que Calculaba, narra al Califa
de Bagdad, Al-Motacén
Billah, Emir de los Creyentes. . . . . . . . . . . . . . .
77
CAPITULO
XVII
El Hombre que calculaba
recibe innumerables consultas. Creencias
y supersticiones. Unidades y
figuras. El contador de historias y
calculador. El caso de las 90
manzanas. La ciencia y la caridad. . . . . . .
85
CAPITULO
XVIII
Que trata de nuestra vuelta
al palacio del jeque Iezid. Una reunión de
poetas y letrados. El
homenaje al maharajá de Lahore. La Matemática
en la India. La hermosa
leyenda sobre “la perla de Lilavati”. Los
grandes tratados que los
hindúes escribieron sobre las Matemáticas. . .
92
CAPITULO
XIX
Donde se narran los elogios
que el Príncipe Cluzir hizo del Hombre que
Calculaba. Beremiz resuelve
el problema de los tres marineros y
descubre el secreto de una
medalla. La generosidad del maharajá de
Lahore. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
100
CAPITULO XX
Cómo Beremiz da su segunda
clase de Matemáticas. Número y sentido
del número. Las cifras.
Sistema de numeración. Numeración decimal. El
cero. Oímos nuevamente la
delicada voz de la invisible alumna. El
gramático Doreid cita un
poema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
106
CAPITULO
XXI
Comienzo a recopilar textos
sobre Medicina. Grandes progresos de la
invisible alumna. Beremiz es
llamado a resolver un complicado
problema. El rey Mazim y las
prisiones de Korassan. Sanadik, el
contrabandista. Un verso, un
problema y una leyenda. La justicia del rey
Mazim. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
113
CAPITULO
XXII
De cuanto sucediera en el
transcurso de nuestra visita a la prisión de
Bagdad. Cómo Beremiz
resolvió el problema de la mitad de los años de
vida de Sanadik. El instante
de tiempo. La libertad condicional. Beremiz
explica los fundamentos de
una sentencia. . . . . . . . . . . . . . . . . . . . . . . .
119
CAPITULO
XXIII
De lo que sucedió durante
una honrosa visita que recibimos. Palabras
del Príncipe Cluzir Schá.
Una invitación principesca. Beremiz resuelve
un nuevo problema. Las
perlas del rajá. Un número cabalístico. Queda
determinada nuestra partida
para la India. . . . . . . . . . . . . . . . . . . . . . . . .
Pág.
123
CAPITULO
XXIV
Sobre el rencoroso Tara-Tir.
El epitafio de Diofanto. El problema de
Hierón. Beremiz se libra de
un enemigo peligroso. Una carta del capitán
Hassan. Los cubos de 8 y 27.
La pasión por el cálculo. La muerte de
Arquímedes. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
129
CAPITULO
XXV
Beremiz es llamado
nuevamente a palacio. Una extraña sorpresa. Difícil
torneo de uno contra siete.
La restitución del misterioso anillo. Beremiz
es obsequiado con una
alfombra de color azul. Versos que conmueven
a un corazón apasionado. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
134
CAPITULO
XXVI
De nuestro encuentro con un
teólogo famoso. El problema de la vida
futura. Todo musulmán debe
conocer el Libro Sagrado. ¿Cuántas
palabras hay en el Corán?
¿Cuántas letras? El nombre de Jesús es
citado 19 veces. Un engaño
de Beremiz. . . . . . . . . . . . . . . . . . . . . . . . . .
138
CAPITULO
XXVII
Cómo un sabio Historiador
interroga a Beremiz. El geómetra que no
podía mirar al cielo. La
Matemática de Grecia. Elogio de Eratóstnes. . .
141
CAPITULO
XXVIII
Prosigue el memorable
torneo. El tercer sabio interroga a Beremiz. La
falsa inducción. Beremiz
demuestra que un principio falso puede ser
sugerido por ejemplos
verdaderos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
144
CAPITULO XXIX
En el que escuchamos una
antigua leyenda persa. Lo material y lo
espiritual. Los problemas
humanos y trascendentes. La multiplicación
más famosa. El Sultán
reprime con energía la intolerancia de los jeques
islamitas. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
147
CAPITULO
XXX
El Hombre que Calculaba
narra una leyenda. El tigre sugiere la división
de “tres” entre “tres”. El
chacal indica la división de “tres” entre “dos”.
Cómo se calcula el cociente
en la Matemática del más fuerte. El jeque
el gorro verde elogia a
Beremiz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
151
CAPITULO
XXXI
El sabio cordobés narra una
leyenda. Los tres novios de Dahizé. El
problema de “los cinco
discos”. Cómo Beremiz reprodujo el raciocinio
de un novio inteligente. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pág
156
CAPITULO
XXXII
En el que Beremiz es
interrogado por un astrónomo libanés. El
problema de “la perla más
ligera”. El astrónomo cita un poema en
alabanza a Beremiz. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
161
CAPITULO
XXXIII
La ofrenda que el Califa
Al-Motacén hizo al Hombre que Calculaba.
Beremiz rechaza oro, cargos
y palacios. Una petición de mano. El
problema de “Los ojos negros
y azules”. Beremiz determina mediante
un raciocinio el color de
los ojos de cinco esclavas. . . . . . . . . . . . . . . . .
165
CAPITULO
XXXIV
“Sígueme –dijo Jesús-. Yo
soy el camino que debes pisar, la verdad en
que debes creer, la vida que
debes esperar. Yo soy el camino sin
peligro, la verdad sin
error, la vida sin muerte”. . . . . . . . . . . . . . . . . . . . .
171
Apéndice . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
Calculadores famosos . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
Los árabes y las Matemáticas
. . . . . . . . . . . . . . . . . . . . . . . .
Algunos pensamientos
elogiosos sobre la Matemática . . . . .
173
174
176
178
Consideraciones sobre los
problemas planteados . . . . . . . . . . . . . . . . . .
181
Lexicón . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
197
Voces árabes . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
227
Naciones, ciudades,
accidentes geográficos. Nombres de autores,
personajes históricos,
matemáticos… etc. . . . . . . . . . . . . . . . . . . . . . . . .
233
Interjecciones árabes . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
248
Introducción
Los países
árabes han ejercido siempre una clara fascinación, por la
diversidad
de sus costumbres, de sus ritos, y nada más adentrarnos en la
historia de
las naciones ribereñas del Mediterráneo, nos salen al paso los
vestigios
de aquella civilización, de la cual somos tributarios en cierto modo
principalmente
en aquellas disciplinas que tienen un carácter científico: la
Matemática,
la Astronomía, la Física y también la Medicina.
Los árabes,
han sido siempre un pueblo paciente, acostumbrado a las
adversidades
que les procuran la dificultad del clima, la falta de agua y los
inmensos
páramos que les es preciso salvar para comunicarse con los demás
pueblos de
su área. La solitud del desierto, las noches silenciosas, el calor
agobiante
durante el día y el frío penetrante al caer el sol, impiden en realidad
una
actividad física, pero predisponen el ánimo para la meditación.
También los
griegos fueron maestros del pensamiento, principalmente
dedicado a
la Filosofía y aun cuando entre ellos se encuentran buenos
matemáticos
–la escuela de Pitágoras todavía está presente- fue una actividad
de unos
pocos y, en cierto modo, era considerada una ciencia menor. Los
pueblos
árabes, en cambio, la tomaron como principal ejercicio de su actividad
mental,
heredera de los principios de la India a los que desarrollaron y
engrandecieron
por su cuenta.
Asombran
todavía hoy los monumentos que la antigüedad nos ha legado
procedentes
de aquellos países en los que se observa, más que la inquietud
artística,
muchas veces vacilante e indecisa, la precisión matemática.
Por esto,
cuando en un libro como El Hombre que Calculaba se juntan estas
dos facetas
tan distintas, a saber Poesía y Matemática, tiene un encanto
indiscutible
y nos adentramos en lo que sería posible aridez en los cálculos, a
través de
interesantes historias y leyendas, unas llenas de Poesía, otras de
humanidad y
siempre bajo un fondo matemático en el que penetramos sin
darnos
cuenta y, mejor dicho, con evidente placer y satisfacción.
Este es un
aspecto que es menester resaltar porque, en general, existe una
cierta
prevención o resistencia hacia el cultivo de la ciencia matemática para la
cual es
menester una adecuación del gusto o una inclinación concedida por la
naturaleza.
El educador sabe de cierto, a los pocos días de contacto con sus
alumnos,
cuáles de ellos serán los futuros arquitectos o ingenieros por la
especial
predisposición que demuestran, para ellos toda explicación relativa a
los números
es un placer y avanzan en la disciplina sin fatiga ni prevención. Sin
embargo el
número de alumnos que destaquen es limitado y, no obstante, no
se puede
prescindir en manera alguna de esa enseñanza fundamental, aun
para
aquellos que no piensan dedicar su actividad futura a una de aquellas
ramas, por
una sencilla razón; que el cultivo de la Matemática obliga a razonar
de manera
lógica, segura, sin posibilidad de error y ésta es un aspecto que es
necesario
en la vida, para cualquiera actividad.
Creemos que
este es el aspecto principal y que cabe destacar del libro El
Hombre que
Calculaba toda vez que no nos presenta unos áridos problemas a
resolver,
sino que los envuelve en un sentido lógico, el cual destaca,
demostrando
con ello la importantísima función que esa palabra, la Lógica,
tiene en la
solución de todos los problemas.
En el campo
filosófico la Lógica toma prestada de la Matemática sus
principios
y es con ellos y solo con ellos que se puede dar unas normas para
conducir el
pensamiento de manera recta, que es su exclusiva finalidad.
El Hombre
que Calculaba es, pues, una obra evidentemente didáctica que
cumple con
aquel consagrado aforismo de que es preciso instruir deleitando.
Su
protagonista se nos hace inmediatamente simpático porque es sencillo,
afable,
comunicativo, interesado en los problemas ajenos y totalmente sensible
al encanto
poético el cual ha de llevarle a la consecución del amor y, lo que es
más
importante, al conocimiento de la verdadera fe.
La acción
transcurre entre el fasto oriental, sin dejar por ello de darnos a
conocer los
aspectos menos halagüeños de aquellos países en los que la
diferencia
social, de rango y de riqueza, eran considerables y completamente
distanciadas.
Tiene, además, el encanto poético que nos habla de la
sensibilidad
árabe en todo lo concerniente a la belleza y por último la
estimación
del ejercicio y dedicación intelectuales al presentarnos un torneo, en
el que
juegan tanto el malabarismo matemático, como la poesía y la
sensibilidad.
Dicho
torneo representa la culminación del hombre, de humilde cuna, que
gracias a
su disposición especial, llega a alcanzar cumbres con las que ni
siquiera
podía soñar. Es como una admonición o como un presagio de lo que
en nuestros
tiempos se presenta como más importante, en que los medios
modernos de
cálculo, con las maravillosas máquinas que el hombre ha creado
–máquinas
fundamentadas en principios repetidos a lo largo de los siglosestán
dispuestas
al servicio del hombre para que pueda triunfar en cualquier
actividad.
No es concebible la acción de un financiero, de un comerciante, de
un
industrial, de un fabricante, de todo el engranaje de la moderna industria y
comercio,
sin el auxilio de las Computadoras, de manera que bien se puede
decir que
la Matemática, se ha adueñado en nuestros tiempos de la sociedad.
Y, sin
embargo, con ser mucho, no lo es todo porque si sólo se atiende a esa
materialidad
a la que tan eficazmente sirve, la formación integral del hombre
queda
descuidada y le hace incompleto.
No solo de
pan vive el hombre; también necesita de cuando en cuanto dejar
volar la
fantasía y atender a otras inquietudes espirituales de las que no puede
prescindir.
El recto
camino nos lo enseña El Hombre que Calculaba, en el que parece
que también
está “calculada” la dosis necesaria de los elementos que han de
hacer de la
Matemática un poderoso auxiliar, para que el hombre obtenga su
formación
total.
Demostrar
que también en los números puede haber poesía; que los buenos
y rectos
sentimientos no son solo patrimonio de filósofos o practicantes; que la
fantasía no
está reñida con la precisión; que la Lógica debe acompañar todos
nuestros
actos y que es posible alcanzar el camino verdadero para la completa
satisfacción
moral, física e intelectual del hombre es el fruto que se obtendrá de
la lectura
de este extraordinario libro.
Representa
una ráfaga de aire fresco, un descanso en la senda árida de los
números que
nos encadena, y nos advierte que es posible mirar el cielo
estrellado,
para admirarlo, y no solo para contar distancias o el número de
cuerpos
luminosos que lo integran; penetraremos en ese ignoto mundo, no solo
con la
intención de entenderlo, sino también de gozarlo.
¡Cuántas
veces en la vida, se nos presentan problemas que parecen
insolubles,
como los que en su aspecto matemático nos ofrece El Hombre que
Calculaba,
en los que la dificultad es más aparente que real! Bata solo ejercitar
el
raciocinio para que nos demos cuenta de que su solución es tan fácil como
deducir que
dos más dos suman cuatro. El sentido práctico que esto nos puede
hacer
adquirir, junto con la convicción de que la belleza está en todas partes, a
nuestra
disposición, con solo tener o sentir la necesidad de buscarla, tiene un
valor
formativo tan elevado que indudablemente ha de producir abundantes
frutos en
lo relativo a la formación del propio carácter.
El Hombre
que Calculaba es como aquellas insignificantes semillas,
pequeñas en
tamaño y aparentemente frágiles, que son capaces de desarrollar
un árbol
gigantesco que proporcione frutos abundantes, sombra y placer sin fin
a su
cultivador.
El que sepa
sacar estas consecuencias merecería, sin duda, la bendición del
famoso
calculador Beremiz Samir quien, a continuación, va a contarnos su
prodigiosa vida y sus no menos
prodigiosos actos.
Dedicatoria
A la memoria de los siete grandes geómetras cristianos o
agnósticos
Descartes, Pascal, Newton,
Leibniz, Euler, Lagrange, Comte
¡Allah se compadezca de estos infieles !
y a la memoria del inolvidable matemático, astrónomo y
filósofo
musulmán
Buchafar Mohamed Abenmusa Al Kharismi
¡Allah lo tenga en su gloria!
y también a todos los que estudian, enseñan o admiran la
prodigiosa ciencia de los tamaños, de las formas, de los
números, de
las medidas, de las funciones, de los movimientos y de las
fuerzas
naturales
yo, el-hadj jerife
Ali Iezid Izz-Edim Ibn Salim Hank
Malba Tahan
creyente de Allah
y de su santo profeta Mahoma
dedico estas páginas de leyenda y fantasía.
En Bagdad, 19 de la Luna de Ramadán de 1321
CAPITULO I
En el que se narran las divertidas circunstancias de mi
encuentro con un singular viajero camino de la ciudad de
Samarra, en la Ruta de Bagdad. Qué hacía el viajero y
cuáles
eran sus palabras.
¡En el nombre de Allah, Clemente y Misericordioso!
Iba yo cierta vez al paso lento de mi camello por la Ruta de
Bagdad
de vuelta de una excursión a la famosa ciudad de Samarra, a
orillas
del Tigres, cuando vi, sentado en una piedra, a un viajero
modestamente vestido que parecía estar descansando de las fatigas
de algún viaje.
Me disponía a dirigir al desconocido el trivial salam de
los
caminantes, cuando, con gran sorpresa por mi parte, vi que se
levantaba y decía ceremoniosamente:
-Un millón cuatrocientos veintitrés mil setecientos cuarenta y
cinco…
Se sentó en seguida y quedó en silencio, con la cabeza apoyada en
las manos, como si estuviera absorto en profundas meditaciones.
Me paré a cierta distancia y me quedé observándolo como si se
tratara de un monumento histórico de los tiempos legendarios.
Momentos después, el hombre se levantó de nuevo y, con voz
pausada y clara, cantó otro número igualmente fabuloso:
-Dos millones trescientos veintiún mil ochocientos sesenta y seis…
Y así, varias veces, el raro viajero se puso en pie y dijo en voz
alta
un número de varios millones, sentándose luego en la tosca piedra
del camino.
Sin poder refrenar mi curiosidad, me acerqué al desconocido, y,
después de saludarlo en nombre de Allah –con Él sean la
oración y la
gloria-, le pregunté
el significado de aquellos números que solo
podrían figurar en cuentas gigantescas.
-Forastero, respondió el Hombre que Calculaba, no censuro la
curiosidad que te ha llevado a perturbar mis cálculos y la
serenidad
de mis pensamientos. Y ya que supiste dirigirte a mí con
delicadeza y
cortesía, voy a atender a tus deseos. Pero para ello necesito
contarte
antes la historia de mi vida.Y relató lo siguiente, que por su
interés
voy a trascribir con toda fidelidad:
CAPITULO II
Donde Beremiz Samir, el Hombre que Calculaba, cuenta la
historia de su vida. Cómo quedé informado de los
cálculos
prodigiosos que realizaba y de cómo vinimos a
convertirnos en
compañeros de jornada.
-Me llamo Beremiz Samir, y nací en la pequeña aldea de Khoi, en
Persia, a la sombra de la pirámide inmensa formada por el monte
Ararat. Siendo aún muy joven empecé a trabajar como pastor al
servicio de un rico señor de Khamat.
Todos los días, al amanecer, llevaba a los pastos el gran rebaño y
me veía obligado a devolverlo a su redil antes de caer la noche.
Por
miedo a perder alguna oveja extraviada y ser, por tal negligencia,
severamente castigado, las contaba varias veces al día.
Así fui adquiriendo poco a poco tal habilidad para contar que, a
veces, de una ojeada contaba sin error todo el rebaño. No contento
con eso, pasé luego a ejercitarme contando los pájaros cuando
volaban en bandadas por el cielo.
Poco a poco fui volviéndome habilísimo en este arte. Al cabo de
unos meses –gracias a nuevos y constantes ejercicios contando
hormigas y otros insectos- llegué a realizar la proeza increíble
de
contar todas las abejas de un enjambre. Esta hazaña de calculador
nada valdría, sin embargo, frente a muchas otras que logré más
tarde. Mi generoso amo poseía, en dos o tres distantes oasis,
grandes
plantaciones de datileras, e, informado de mis habilidades
matemáticas, me encargó dirigir la venta de sus frutos, contados
por
mí en los racimos, uno a uno. Trabajé así al pie de las palmeras
cerca
de diez años. Contento con las ganancias que le procuré, mi
bondadoso patrón acaba de concederme cuatro meses de reposo y
ahora voy a Bagdad pues quiero visitar a unos parientes y admirar
las
bellas mezquitas y los suntuosos palacios de la famosa ciudad. Y,
para no perder el tiempo, me ejercito durante el viaje contando
los
árboles que hay en esta región, las flores que la embalsaman, y
los
pájaros que vuelan por el cielo entre nubes.
Y señalándome una vieja higuera que se erguía a poca distancia,
prosiguió:
-Aquel árbol, por ejemplo, tiene doscientas ochenta y cuatro
ramas. Sabiendo que cada rama tiene como promedio, trescientos
cuarenta y seis hojas, es fácil concluir que aquel árbol tiene un
total
de noventa y ocho mil quinientos cuarenta y ocho hojas. ¿No cree,
amigo mío?
-¡Maravilloso! –exclamé atónico. Es increíble que un hombre pueda
contar, de una ojeada, todas las ramas de un árbol y las flores de
un
jardín… Esta habilidad puede procurarle a cualquier persona
inmensas
riquezas.
-¿Usted cree? –se asombró Beremiz. Jamás se me ocurrió pensar
que contando los millones de hojas de los árboles y los enjambres
de
abejas se pudiera ganar dinero. ¿A quién le puede interesar
cuántas
ramas tiene un árbol o cuántos pájaros forman la bandada que cruza
por el cielo?
-Su admirable habilidad –le expliqué- puede emplearse en veinte
mil casos distintos. En una gran capital como Constantinopla, o
incluso en Bagdad, sería usted un auxiliar precioso para el
Gobierno.
Podría calcular poblaciones, ejércitos y rebaños. Fácil le sería
evaluar
los recursos del país, el valor de las cosechas, los impuestos,
las
mercaderías y todos los recursos del Estado. Le aseguro –por las
relaciones que tengo, pues soy bagdalí- que no le será difícil
obtener
algún puesto destacado junto al califa Al-Motacén, nuestro amo y
señor. Tal vez pueda llegar al cargo de visir-tesorero o
desempeñar
las funciones de secretario de la Hacienda musulmana.
-Si es así en verdad, no lo dudo, respondió el calculador. Me voy
a
Bagdad.
Y sin más preámbulos se acomodó como pudo en mi camello –el
único que llevábamos-, y nos pusimos a caminar por el largo camino
cara a la gloriosa ciudad.
Desde entonces, unidos por este encuentro casual en medio de la
agreste ruta, nos hicimos compañeros y amigos inseparables.
Beremiz era un hombre de genio alegre y comunicativo. Muy joven
aún –pues no había cumplido todavía los veintiséis años- estaba
dotado de una inteligencia extraordinariamente viva y de notables
aptitudes para la ciencia de los números.
Formulaba a veces, sobre los acontecimientos más triviales de la
vida, comparaciones inesperadas que denotaban una gran agudeza
matemática. Sabía también contar historias y narrar episodios que
ilustraban su conversación, ya de por sí atractiva y curiosa.
A veces se quedaba en silencio durante varias horas; encerrado en
un mutismo impenetrable, meditando sobre cálculos prodigiosos. En
esas ocasiones me esforzaba en no perturbarlo. Le dejaba
tranquilo,
para que pudiera hacer, con los recursos de su privilegiada
memoria,
descubrimientos fascinantes en los misteriosos arcanos de la
Matemática, la ciencia que los árabes tanto cultivaron y
engrandecieron.
CAPITULO III
Donde se narra la singular aventura de los treinta y
cinco
camellos que tenían que ser repartidos entre tres
hermanos
árabes. Cómo Beremiz Samir, el Hombre que Calculaba,
efectuó un reparto que parecía imposible, dejando
plenamente
satisfechos a los tres querellantes. El lucro inesperado
que
obtuvimos con la transacción.
Hacía pocas horas que viajábamos sin detenernos cuando nos
ocurrió una aventura digna de ser relatada, en la que mi compañero
Beremiz, con gran talento, puso en práctica sus habilidades de
eximio
cultivador del Álgebra.
Cerca de un viejo albergue de caravanas medio abandonado, vimos
tres hombres que discutían acaloradamente junto a un hato de
camellos.
Entre gritos e improperios, en plena discusión, braceado como
posesos, se oían exclamaciones:
-¡Que no puede ser!
-¡Es un robo!
-¡Pues yo no estoy de acuerdo!
El inteligente Beremiz procuró informarse de lo que discutían.
-Somos hermanos, explicó el más viejo, y recibimos como herencia
esos 35 camellos. Según la voluntad expresa de mi padre, me
corresponde la mitad, a mi hermano Hamed Namur una tercera parte
y a Harim, el más joven, solo la novena parte. No sabemos, sin
embargo, cómo efectuar la partición y a cada reparto propuesto por
uno de nosotros sigue la negativa de los otros dos. Ninguna de las
particiones ensayadas hasta el momento, nos ha ofrecido un
resultado aceptable. Si la mitad de 35 es 17 y medio, si la
tercera
parte y también la novena de dicha cantidad tampoco son exactas
¿cómo proceder a tal partición?
-Muy sencillo, dijo el Hombre que Calculaba. Yo me comprometo a
hacer con justicia ese reparto, mas antes permítanme que una a
esos
35 camellos de la herencia este espléndido animal que nos trajo
aquí
en buena hora.
En este punto intervine en la cuestión.
-¿Cómo voy a permitir semejante locura? ¿Cómo vamos a seguir el
viaje si nos quedamos sin el camello?
-No te preocupes, bagdalí, me dijo en voz baja Beremiz. Sé muy
bien lo que estoy haciendo. Cédeme tu camello y verás a que
conclusión llegamos.
Y tal fue el tono de seguridad con que lo dijo que le entregué sin
el
menor titubeo mi bello jamal, que, inmediatamente, pasó a
incrementar la cáfila que debía ser repartida entre los tres
herederos.
-Amigos míos, dijo, voy a hacer la división justa y exacta de los
camellos, que como ahora ven son 36.
Y volviéndose hacia el más viejo de los hermanos, habló así:
-Tendrías que recibir, amigo mío, la mitad de 35, esto es: 17 y
medio. Pues bien, recibirás la mitad de 36 y, por tanto, 18. Nada
tienes que reclamar puesto que sales ganando con esta división.
Y dirigiéndose al segundo heredero, continuó:
-Y tú, Hamed, tendrías que recibir un tercio de 35, es decir 11 y
poco más. Recibirás un tercio de 36, esto es, 12. No podrás
protestar, pues también tú sales ganando en la división.
Y por fin dijo al más joven:
-Y tú, joven Harim Namur, según la última voluntad de tu padre,
tendrías que recibir una novena parte de 35, o sea 3 camellos y
parte
del otro. Sin embargo, te daré la novena parte de 36 o sea, 4. Tu
ganancia será también notable y bien podrás agradecerme el
resultado.
Y concluyó con la mayor seguridad:
-Por esta ventajosa división que a todos ha favorecido,
corresponden 18 camellos al primero, 12 al segundo y 4 al tercero,
lo
que da un resultado – 18 + 12 + 4 – de 34 camellos. De los 36
camellos sobran por tanto dos. Uno, como saben, pertenece al
badalí,
mi amigo y compañero; otro es justo que me corresponda, por haber
resuelto a satisfacción de todos el complicado problema de la
herencia.
-Eres inteligente, extranjero, exclamó el más viejo de los tres
hermanos, y aceptamos tu división con la seguridad de que fue
hecha
con justicia y equidad.
Y el astuto Beremiz –el Hombre que Calculaba- tomó posesión de
uno de los más bellos jamales del hato, y me dijo entregándome por
la rienda el animal que me pertenecía:
-Ahora podrás, querido amigo, continuar el viaje en tu camello,
manso y seguro. Tengo otro para mi especial servicio.
Y seguimos camino hacia Bagdad.
CAPITULO IV
De nuestro encuentro con un rico jeque, malherido y
hambriento. La propuesta que nos hizo sobre los ocho
panes
que llevábamos, y cómo se resolvió, de manera imprevista,
el
reparto equitativo de las ocho monedas que recibimos en
pago. Las tres divisiones de Beremiz: la división
simple, la
división cierta y la división perfecta. Elogio que un
ilustre visir
dirigió al Hombre que Calculaba.
Tres días después, nos acercábamos a las ruinas de una pequeña
aldea denominada Sippar cuando encontramos caído en el camino a
un pobre viajero, con las ropas desgarradas y al parecer
gravemente
herido. Su estado era lamentable.
Acudimos en socorro del infeliz y él nos narró luego sus
desventuras.
Se llamaba Salem Nassair, y era uno de los más ricos mercaderes
de Bagdad. Al regresar de Basora, pocos días antes, con una gran
caravana, por el camino de el-Hilleh, fue atacado por una chusma
de
nómadas persas del desierto. La caravana fue saqueada y casi todos
sus componentes perecieron a manos de los beduinos. Él –el
jefeconsiguió
escapar milagrosamente, oculto en la arena, entre los
cadáveres de sus esclavos.
Al concluir la narración de su desgracia, nos preguntó con voz
ansiosa:
-¿Traéis quizá algo de comer? Me estoy muriendo de hambre…
-Me quedan tres panes –respondí.
-Yo llevo cinco, dijo a mi lado el Hombre que Calculaba.
-Pues bien, sugirió el jeque, yo os ruego que juntemos esos panes
y hagamos un reparto equitativo. Cuando llegue a Bagdad prometo
pagar con ocho monedas de oro el pan que coma.
Así lo hicimos.
Al día siguiente, al caer la tarde, entramos en la célebre ciudad
de
Bagdad, perla de Oriente.
Al atravesar la vistosa plaza tropezamos con un aparatoso cortejo
a cuyo frente iba, en brioso alazán, el poderoso brahim Maluf, uno
de
los visires.
El visir, al ver al jeque Salem Nassair en nuestra compañía le
llamó, haciendo detener a su brillante comitiva y le preguntó:
-¿Qué te pasó, amigo mío? ¿Cómo es que llegas a Bagdad con las
ropas destrozadas y en compañía de estos dos desconocidos?
El desventurado jeque relató minuciosamente al poderoso ministro
todo lo que le había ocurrido en le camino, haciendo los mayores
elogios de nosotros.
-Paga inmediatamente a estos dos forasteros, le ordenó el gran
visir.
Y sacando de su bolsa 8 monedas de oro se las dio a Salem
Nassair, diciendo:
-Te llevaré ahora mismo al palacio, pues el Defensor de los
Creyentes deseará sin duda ser informado de la nueva afrenta que
los
bandidos y beduinos le han infligido al atacar a nuestros amigos y
saquear una de nuestras caravanas en territorio del Califa.
El rico Salem Nassair nos dijo entonces:
-Os dejo, amigos míos. Quiero, sin embargo, repetiros mi
agradecimiento por el gran auxilio que me habéis prestado. Y para
cumplir la palabra dada, os pagaré lo que tan generosamente
disteis.
Y dirigiéndose al Hombre que Calculaba le dijo:
-Recibirás cinco monedas por los cinco panes.
Y volviéndose a mí, añadió:
-Y tú, ¡Oh, bagdalí!, recibirás tres monedas por los tres panes.
Mas con gran sorpresa mía, el calculador objetó respetuoso:
-¡Perdón, oh, jeque! La división, hecha de ese modo, puede ser
muy sencilla, pero no es matemáticamente cierta. Si yo entregué 5
panes he de recibir 7 monedas, mi compañero bagdalí, que dio 3
panes, debe recibir una sola moneda.
-¡Por el nombre de Mahoma!, intervino el visir Ibrahim, interesado
vivamente por el caso. ¿Cómo va a justificar este extranjero tan
disparatado reparto? Si contribuiste con 5 panes ¿por qué exiges 7
monedas?, y si tu amigo contribuyó con 3 panes ¿por qué afirmas
que él debe recibir solo una moneda?
El Hombre que Calculaba se acercó al prestigioso ministro y habló
así:
-Voy a demostraros. ¡Oh, visir!, que la división de las 8 monedas
por mí propuesta es matemáticamente cierta. Cuando durante el
viaje, teníamos hambre, yo sacaba un pan de la caja en que estaban
guardados, lo dividía en tres pedazos, y cada uno de nosotros
comía
uno. Si yo aporté 5 panes, aporté, por consiguiente, 15 pedazos
¿no
es verdad? Si mi compañero aportó 3 panes, contribuyó con 9
pedazos. Hubo así un total de 24 pedazos, correspondiendo por
tanto
8 pedazos a cada uno. De los 15 pedazos que aporté, comí 8; luego
di en realidad 7. Mi compañero aportó, como dijo, 9 pedazos, y
comió
también 8; luego solo dio 1. Los 7 que yo di y el restante con que
contribuyó al bagdalí formaron los 8 que corresponden al jeque
Salem Nassair. Luego, es justo que yo reciba siete monedas y mi
compañero solo una.
El gran visir, después de hacer los mayores elogios del Hombre que
Calculaba, ordenó que le fueran entregadas las siete monedas, pues
a mí, por derecho, solo me correspondía una. La demostración
presentada por el matemático era lógica, perfecta e incontestable.
Sin embargo, si bien el reparto resultó equitativo, no debió
satisfacer plenamente a Beremiz, pues éste dirigiéndose nuevamente
al sorprendido ministro, añadió:
-Esta división, que yo he propuesto, de siete monedas para mí y
una para mi amigo es, como demostré ya, matemáticamente cierta,
pero no perfecta a los ojos de Dios.
Y juntando las monedas nuevamente las dividió en dos partes
iguales. Una me la dio a mí –cuatro monedas- y se quedó la otra.
-Este hombre es extraordinario, declaró el visir. No aceptó la
división propuesta de ocho dinares en dos partes de cinco y tres
respectivamente, y demostró que tenía derecho a percibir siete y
que
su compañero tenía que recibir sólo un dinar. Pero luego divide
las
ocho monedas en dos partes iguales y le da una de ellas a su
amigo.
Y añadió con entusiasmo:
-¡Mac Allah! Este joven, aparte de parecerme un sabio y
habilísimo
en los cálculos de Aritmética, es bueno para el amigo y generoso
para
el compañero. Hoy mismo será mi secretario.
-Poderoso Visir, dijo el Hombre que Calculaba, veo que acabáis de
realizar con 29 palabras, y con un total de 135 letras, la mayor
alabanza que oí en mi vida, y yo, para agradecéroslo tendré que
emplear exactamente 58 palabras en las que figuran nada menos que
270 letras. ¡Exactamente el doble! ¡Q ue Allah os bendiga
eternamente y os proteja! ¡Seáis vos por siempre alabado!
La habilidad de mi amigo Beremiz llegaba hasta el extremo, de
contar las palabras y las letras del que hablaba, y calcular las
que iba
utilizando en su respuesta para que fueran exactamente el doble.
Todos quedamos maravillados ante aquella demostración de
envidiable talento.
CAPITULO V
De los prodigiosos cálculos efectuados por Beremiz
Samir,
camino de la hostería “El Anade Dorado”, para determinar
el
número exacto de palabras pronunciadas en el transcurso
de
nuestro viaje y cuál el promedio de las pronunciadas por
minuto. Donde el Hombre que Calculaba resuelve un
problema
y queda establecida la deuda de un joyero.
Luego de dejar la compañía del jeque Nassair y del visir Maluf,
nos
encaminamos a una pequeña hostería, denominada “El Anade
Dorado”, en la
vecindad de la mezquita de Solimán. Allí nuestros
camellos fueron vendidos a un chamir de mi confianza, que
vivía
cerca.
De camino, le dije a Beremiz:
-Ya ves, amigo mío, que yo tenía razón cuando dije que un hábil
calculador puede encontrar con facilidad un buen empleo en Bagdad.
En cuanto llegaste ya te pidieron que aceptaras el cargo de
secretario
de un visir. No tendrás que volver a la aldea de Khol, peñascosa y
triste.
-Aunque aquí prospere y me enriquezca, me respondió el
calculador, quiero volver más tarde a Persia, para ver de nuevo mi
terruño, ingrato es quien se olvida de la patria y de los amigos
de la
infancia cuando halla la felicidad y se asienta en el oasis de la
prosperidad y la fortuna.
Y añadió tomándome del brazo:
-Hemos viajado juntos durante ocho días exactamente. Durante
este tiempo, para aclarar dudas e indagar sobre las cosas que me
interesaban, pronuncié exactamente 414.720 palabras. Como en
ocho días hay 11.520 minutos puede deducirse que durante la
jornada pronuncié una media de 36 palabras por minuto, esto es
2.160 por hora. Esos números demuestran que hablé poco, fui
discreto y no te hice perder tiempo oyendo discursos estériles. El
hombre taciturno, excesivamente callado, se convierte en un ser
desagradable; pero los que hablan sin parar irritan y aburren a
sus
oyentes. Tenemos, pues, que evitar las palabras inútiles, pero sin
caer en el laconismo exagerado, incompatible con la delicadeza. Y
a
tal respecto podré narrar un caso muy curioso.
Y tras una breve pausa, el calculador me contó lo siguiente:
-Había en Teherán, en Persia, un viejo mercader que tenía tres
hijos. Un día el mercader llamó a los jóvenes y les dijo: “El que
sea
capaz de pasar el día sin pronunciar una palabra inútil recibirá
de mí
un premio de veintitrés timunes”.
Al caer de la noche los tres hijos fueron a presentarse ante el
anciano. Dijo el primero:
-Evité hoy ¡Oh, padre mío! Toda palabra inútil. Espero, pues,
haber
merecido, según tu promesa, el premio ofrecido. El premio, como
recordarás sin duda, asciende a veintitrés timunes.
El segundo se acercó al viejo, le besó las manos, y se limitó a
decir:
-¡Buenas noches, padre!
El más joven no dijo una palabra. Se acercó al viejo y le tendió
la
mano para recibir el premio. El mercader, al observar la actitud
de los
tres muchachos, habló así:
-El primero, al presentarse ante mí, fatigó mi intención con
varias
palabras inútiles; el tercero se mostró exageradamente lacónico.
El
premio corresponde, pues, al segundo, que fue discreto sin
verbosidad, y sencillo sin afectación.
Y Beremiz, al concluir, me preguntó:
-¿No crees que el viejo mercader obró con justicia al juzgar a los
tres hijos?
Nada respondí. Crei mejor no discutir el caso de los veintitrés
timunes con
aquel hombre prodigioso que todo lo reducía a números,
calculaba promedios y resolvía problemas.
Momentos después, llegamos al albergue del “Anade Dorado”.
El dueño de la hostería se llamaba Salim y había sido empleado de
mi padre. Al verme gritó risueño:
-¡Allah sobre ti!, pequeño.
Espero tus órdenes ahora y siempre.
Le dije que necesitaba un cuarto para mí y para mi amigo Beremiz
Samir, el calculador secretario del visir Maluf.
-¿Este hombre es calculador?, preguntó el viejo Salim. Pues llega
en el momento justo para sacarme de un apuro. Acabo de tener una
discusión con un vendedor de joyas. Discutimos largo tiempo y de
nuestra discusión resultó al fin un problema que no sabemos
resolver.
Informadas de que había llegado a la hostería un gran calculador,
varias personas se acercaron curiosas. El vendedor de joyas fue
llamado y declaró hallarse interesadísimo en la resolución de tal
problema.
-¿Cuál es finalmente el origen de la duda? preguntó Beremiz.
El viejo Salim contestó:
-Ese hombre –y señaló al joyero- vino de Siria para vender joyas
en Bagdad. Me prometió que pagaría por el hospedaje 20 dinanes si
vendía todas las joyas por 100 dinares, y 35 dinares si las vendía
por
200.
Al cabo de varios días, tras andar de acá para allá, acabó
vendiéndolas todas por 140 dinares. ¿cuánto debe pagar de acuerdo
con nuestro trato por el hospedaje?
-¡Veinticuatro dinares y medio! ¡Es lógico!, replicó el sirio. Si
vendiéndolas en 200 tenía que pagar 35, al venderlas en 140 he de
pagar 24 y medio… y quiero demostrártelo:
Si al venderlas en 200 dinares debía pagarte 35, de haberlas
vendido en 20, -diez veces menos- lógico es que solo te hubiera
pagado 3 dinares y medio.
Mas, como bien sabes, las he vendido por 140 dinares. Veamos
cuántas veces 140 contiene a 20. Creo que siete, si es cierto mi
cálculo. Luego, si vendiendo las joyas en 20 debía pagarte tres
dinares y medio, al haberlas vendido en 140, he de pagarte un
importe equivalente a siete veces tres dinares y medio, o sea, 24
dinares y medio.
Proporción establecida por el joyero
200 : 35 : : 140 : x
35 x 140
x = ------------ = 24 ‘5
200
-Estás equivocado, le contradijo irritado el viejo Salim; según
mis
cuentas son veintiocho. Fíjate: si por 100 tenía que recibir 20,
por
140 he de recibir 28. ¡Está muy claro! Y te lo demostraré.
Y el viejo Salim razonó del siguiente modo:
-Si por 100 iba a recibir 20, por 10 –que es la décima parte de
100- me correspondería la décima parte de 20. ¿Cuál es la décima
parte de 20? La décima parte de 20 es 2. Luego, por 10 tendría que
recibir 2. ¿Cuántos 10 contiene 140) el 140 contiene 14 veces 10.
Luego para 140 debo recibir 14 veces 2, que es igual a 28 como ya
dije anteriormente.
Proporción establecida por el viejo Salim
100 : 20 : : 140 : x
20 x 140
x = ------------ = 28
100
Y el viejo Salim, después de todos aquellos cálculos exclamó
enérgico:
-¡He de recibir 28! ¡Esta es la cuenta correcta!
-Calma, amigos míos, interrumpió el calculador; hay que aclarar
las dudas con serenidad y mansedumbre. La precipitación lleva al
error y a la discordia. Los resultados que indicáis están
equivocados,
como probaré a continuación.
Y expuso el siguiente razonamiento:
-De acuerdo con el pacto que habéis hecho, tú, dijo dirigiéndose
al
sirio, tenías que pagar 20 dinares por el hospedaje si hubieras
vendido las joyas por 100 dinares, mas si hubieras percibido 200
dinares, debías abonar 35.
Así, pues, tenemos:
Precio de venta Coste del hospedaje
200 . . . . . . . . . . . . . . . . . . . . .35
100 . . . . . . . . . . . . . . . . . . . . .20
100 . . . . . . . . . . . . . . . . . . . . .15
Fijaos en que una diferencia de 100 en el precio de venta
corresponde a una diferencia de 15 en el precio del hospedaje.
¿Está
claro?
-¡Claro como la leche de camella!, asintieron ambos litigantes.
-Entonces, prosiguió el calculador, si el aumento de 100 en la
venta supone un aumento de 15 en el hospedaje, yo pregunto: ¿cuál
será el aumento del hospedaje cuando la venta aumenta en 40? Si la
diferencia fuera 20 –que es un quinto de 100- el aumento del
hospedaje sería 3 –pues 3 es un quinto de 15-. Para la diferencia
de
40 –que es el doble de 20- el aumento de hospedaje habrá de ser 6.
El pago que corresponde a 140 es, en consecuencia, 25 dinares.
Amigos míos, los números, en la simplicidad con que se presentan,
deslumbran incluso a los más avisados.
Proporción establecida por el Beremiz
100 : 15 : :140 : x
15 x 40
x = ------------ = 6
100
Las proporciones que nos parecen perfectas están a veces
falseadas por el error. De la incertidumbre de los cálculos
resulta el
indiscutible prestigio de la Matemática. Según los términos del
acuerdo, el señor habrá de pagarte 26 dinares y no 24 y medio como
creía al principio. Hay aún en la solución final de este problema,
una
pequeña diferencia que no debe ser apurada y cuya magnitud no
puedo expresar numéricamente.
-Tiene el señor toda la razón, asintió el joyero; reconozco que mi
cálculo estaba equivocado.
Y sin vacilar sacó de la bolsa 26 dinares y se los entregó al
viejo
Salim, ofreciendo como regalo al agudo Beremiz un bello anillo de
oro
con dos piedras oscuras, y añadiendo a la dádiva las más
afectuosas
expresiones.
Todos los que se hallaban en la hostería se admiraron de la
sagacidad del calculador, cuya fama crecía de hora en hora y se
acercaba a grandes pasos al alminar del triunfo.
CAPITULO VI
De lo que sucedió durante nuestra visita al visir Maluf.
De
nuestro encuentro con el poeta Iezid, que no creía en
los
prodigios del cálculo. El Hombre que Calculaba cuenta de
manera original los camellos de una numerosa cáfila. La
edad
de la novia y un camello sin oreja. Beremiz descubre la
“amistad cuadrática” y habla del rey Salomón.
Después de la segunda oración dejamos la hostería de “El
Anade
Dorado” y seguimos a paso rápido hacia la residencia del visir
Ibrahim Maluf, ministro del rey.
Al entrar en la rica morada del noble musulmán quedé realmente
maravillado.
Cruzamos la pesada puerta de hierro y recorrimos un estrecho
corredor, siempre guiados por un esclavo negro gigantesco, ornado
con unos brazaletes de oro, que nos condujo hasta el soberbio y
espléndido jardín interior del palacio.
Este jardín, construido con exquisito gusto, estaba sombreado por
dos hileras de naranjos. Al jardín se abrían varias puertas,
algunas de
las cuales debían dar acceso al harén del palacio. Dos esclavas kafiras
que se hallaban entretenidas cogiendo flores, corrieron al vernos,
a
refugiarse entre los macizos de flores y desaparecieron tras las
columnas.
Desde el jardín, que me pareció alegre y gracioso, se pasaba por
una puerta estrecha, abierta en un muro bastante alto, al primer
patio de la bellísima vivienda. Digo el primero porque la
residencia
disponía de otro en el ala izquierda del edificio.
En medio de ese primer patio, cubierto de espléndidos mosaicos,
se alzaba una fuente de tres surtidores. Las tres curvas líquidas
formadas en el espacio brillaban al sol.
Atravesamos el patio y, siempre guiados por el esclavo de los
brazaletes de oro, entramos en el palacio. Cruzamos varias salas
ricamente alhajadas con tapicerías bordadas con hilo de plata y
llegamos por fin al aposento en que se hallaba el prestigioso
ministro
del rey.
Lo encontramos recostado en grandes cojines, charlando con dos
amigos.
Uno de ellos –luego lo reconocí- era el jeque Salem Nassair,
nuestro compañero de aventuras del desierto; el otro era un hombre
bajo, de rostro redondo, expresión bondadosa y barba ligeramente
gris, iba vestido con un gusto exquisito y llevaba en el pecho,
una
medalla de forma rectangular, con una de sus mitades amarilla como
el oro y la otra oscura como el bronce.
El visir Maluf nos recibió con demostraciones de viva simpatía, y
dirigiéndose al hombre de la medalla, dijo risueño:
-Ahí tiene, mi querido Iezid, a nuestro gran calculador. El joven
que le acompaña es un bagdalí que lo descubrió por azar cuando iba
por los caminos de Allah.
Dirigimos un respetuoso salam al noble jeque. Mas tarde
supimos
que el que les acompañaba era el famoso poeta Iezid Abdul Hamid,
amigo y confidente del califa Al-Motacén. Aquella medalla singular
la
había recibido como premio de manos del Califa, por haber escrito
un
poema con treinta mil doscientos versos sin emplear ni una sola
vez
las letras Kaf, Kam y Ayn.
-Me cuesta trabajo creer, amigo Maluf, declaró en tono risueño el
poeta Iezid, en las hazañas prodigiosas de este calculador persa.
Cuando los números se combinan, aparecen también los artificios de
los cálculos y las sutilezas algebraicas. Al rey El-Harit, hijo de
Modad,
se presentó cierto día un mago que afirmaba podía leer en la arena
el
destino de los hombres. “¿Hace usted cálculos exactos?”, le
preguntó
el rey. Y antes de que el mago despertase del estupor en que se
hallaba, el monarca añadió: “Si no sabe calcular, de nada valen
sus
previsiones; si las obtiene por cálculo, dudo mucho de ellas”.
Aprendí
en la India un proverbio que dice:
“Hay que desconfiar siete veces del cálculo y cien veces
del
matemático”.
Para poner fin a esta desconfianza –sugirió el Visir-, vamos a
someter a nuestro huésped a una prueba decisiva.
Y diciendo eso se alzó del cómodo cojín y cogiendo delicadamente
a Beremiz por el brazo lo llevó ante uno de los miradores de
palacio.
Se abría el mirador hacia el segundo patio lateral, lleno en aquel
momento de camellos. ¡Qué maravillosos ejemplares! Casi todos
parecían de buena raza, pero ví de pronto dos o tres camellos
blancos, de Mongolia, y varios carehs de pelo claro.
-Ahí tienes, dijo el visir, una bella recua de camellos que compré
ayer y que quiero enviar como presente al padre de mi novia. Sé
exactamente, sin error, cuántos son. ¿Podrías indicarme su número?
Y el visir, para hacer más interesante la prueba, dijo en secreto,
al
oído de su amigo Iezid, el número total de animales que había en
el
abarrotado corral.
Yo me asusté ante el caso. Los camellos eran muchos y se
confundían en una agitación constante. Si mi amigo cometiera un
error de cálculo, nuestra visita al visir habría fracasado
lastimosamente. Pero después de recorrer con la mirada aquella
inquieta cáfila, el inteligente Beremiz dijo:
-Señor Visir: según mis cálculos hay ahora en este patio 257
camellos.
-¡Exactamente! confirmó el visir. ¡Acertó!; el total es realmente
257. ¡Kelimet-Uallah!
-¿Y cómo logró contarlos tan de prisa y con tanta exactitud?
preguntó con curiosidad incontenible el poeta Iezid.
-Muy sencillamente, explicó Beremiz; contar los camellos uno por
uno sería a mi ver tarea sin interés, una bagatela sin
importancia.
Para hacer más interesante el problema procedí de la siguiente
forma: conté primero todas las patas y luego las orejas. Encontré
de
este modo un total de 1.541. a ese total añadí y dividí el
resultado
por 6. Hecha esta pequeña división encontré el cociente exacto:
257.
-¡Por la gloria de la Caaba!, exclamó el visir con alegría. ¡Qué
original y fabuloso es todo esto! ¡Quién iba a imaginarse que este
calculador, para complicar el problema y hacerlo más interesante,
iba
a contar las patas y las orejas de 257 camellos!
Y repitió con sincero entusiasmo:
-¡Por la gloria de la Caaba!
-He de aclarar, señor visir, añadió Beremiz que los cálculos se
hacen a veces complicados y difíciles por descuido o falta de
habilidad
de quien calcula. Una vez, en Khoi, en Persia, cuando vigilaba el
rebaño de mi amo, pasó por el cielo una bandada de mariposas. Un
pastor, a mi lado, me preguntó si podría contarlas. “¡Hay
ochocientas
cincuenta y seis!” respondí. “¿Ochocientas cincuenta y seis?”,
exclamó mi compañero como si hallara exagerado aquel total. Sólo
entonces me di cuenta de que por error había contado, no las
mariposas, sino las alas. Hecha la correspondiente división por
dos,
encontré al fin el resultado cierto.
Al oír el relato de este caso el visir soltó una sonora carcajada
que
sonó a mis oídos como música deliciosa.
-En todo esto, dijo muy serio el poeta Iezid, hay una
particularidad
que escapa a mi raciocinio. La división por 6 es aceptable, pues
cada
camello tiene 4 patas y 2 orejas y la suma 4 + 2 es igual a 6.
Luego,
dividiendo el total hallado –suma de patas y orejas de todos los
camellos- o sea 1.541 por 6, obtendremos el número de camellos. No
comprendo sin embargo, porque añadió un 1 al total antes de
dividirlo por seis.
-Nada más sencillo, respondió Beremiz. Al contar las orejas noté
que uno de los camellos tenía un pequeño defecto: le faltaba una
oreja.
Para que la cuenta fuera exacta había que sumar 1 al total.
Y volviéndose al visir, le preguntó:
-¿Sería indiscreción o imprudencia por mi parte preguntaros. ¡Oh
Visir! Cuántos años tiene la que ha de ser vuestra esposa?
-De ningún modo, respondió sonriente el ministro. Astir tiene 16
años.
Y añadió subrayando sus palabras con un ligero tono de
desconfianza:
-Pero no veo relación alguna, señor calculador, entre la edad de
mi
novia y los camellos que voy a ofrecer como presente a mi futuro
suegro…
-Sólo deseaba, reflexionó Beremiz hacerle una pequeña
sugerencia. Si retira usted de la cáfila el camello defectuoso el
total
será 256. Y 256 es el cuadrado de 16, esto es, 16 veces 16. El
presente ofrecido al padre de la encantadora Astir tendrá de este
modo una perfección matemática, al ser el número total de camellos
igual al cuadrado de la edad de la novia. Además, el número 256 es
potencia exacta del número 2 –que para los antiguos era un número
simbólico-, mientras que el número 257 es primo. Estas relaciones
entre los números cuadrados son de buen augurio para los
enamorados. Hay una leyenda muy interesante sobre los “números
cuadrados”. ¿Deseáis oírla?
-Con mucho gusto, respondió el visir. Las leyendas famosas
cuando están bien narradas son un placer para mis oídos y siempre
estoy dispuesto a escucharlas.
Tras oír las palabras lisonjeras del visir, el calculador inclinó
la
cabeza con gesto de gratitud, y comenzó:
-Se cuenta que el famoso rey Salomón, para demostrar la finura y
sabiduría de su espíritu, dio a su prometida, la reina de Saba –la
hermosa Belquisa- una caja con 529 perlas. ¿Por qué 529? Se sabe
que 529 es igual a 23 multiplicado por 23. Y 23 era exactamente la
edad de la reina. En el caso de la joven Astir, el número 256
sustituirá con mucha ventaja al 529.
Todos miraron con cierto espanto al calculador. Y éste, con tono
tranquilo y sereno, prosiguió:
-Vamos a sumar las cifras de 256. Obtenemos la suma 13. El
cuadrado de 13 es 169. Vamos a sumar las cifras de 169. Dicha suma
es 16. Existe en consecuencia entre los números 13 y 16 una
curiosa
relación que podría ser llamada “amistad cuadrática”. Realmente,
si
los números hablaran, podríamos oír el siguiente diálogo. El
Dieciséis
diría al Trece:
“-Quiero rendirte un homenaje de amistad, amigo. Mi cuadrado es
256 y la suma de los guarismos de ese cuadrado es 13.
“Y el Trece respondería:
“-Agradezco tu gentileza, querido amigo, y quiero corresponder en
la misma moneda. Mi cuadrado es 169 y la suma de los guarismos de
ese cuadrado es 16”.
Me parece que justifiqué cumplidamente la preferencia que
debemos otorgar al número 256, que excede por sus singularidades
al número 257.
-Es curiosa su idea, dijo de pronto el visir, y voy a ejercitarla
aunque pese sobre mí la acusación de plagiar al gran Salomón.
Y dirigiéndose al poeta Iezid, le dijo:
-Veo que la inteligencia de este calculador no es menor que su
habilidad para descubrir analogías e inventar leyendas. Muy
acertado
estuve cuando decidí convertirlo en mi secretario.
-siento tener que deciros, ilustre Mirza, replicó Beremiz,
que solo
podré aceptar su honroso ofrecimiento si hay aquí también lugar
para
mi amigo Hank-Tadé-Maiá, el bagdalí, que está ahora sin trabajo y
sin recursos.
Quedé encantado con la delicada gentileza del calculador.
Procuraba, de este modo, atraer a mi favor la valiosa protección
de
poderoso visir.
-Muy justa es tu petición, condescendió el visir. Tu compañero
Hank-Tadé-Maiá, quedará ejerciendo aquí las funciones de “escriba”
con el sueldo que le corresponde.
Acepté sin vacilar la propuesta, y expresé luego al visir y
también
al bondadoso Beremiz mi reconocimiento.
CAPITU LO VII
De nuestra visita al zoco de los mercaderes. Beremiz y
el
turbante azul. El caso de “los cuatro cuatros”. El
problema de
los cincuenta dinares. Beremiz resuelve el problema y
recibe
un bellísimo obsequio.
Días después, terminado nuestro trabajo diario en el palacio del
visir, fuimos a dar un paseo por el zoco y los jardines de Bagdad.
La ciudad presentaba aquella tarde un intenso movimiento, febril y
fuera de lo común. Aquella misma mañana habían llegado a la ciudad
dos ricas caravanas de Damasco.
La llegada de las caravanas era siempre un acontecimiento puesto
que era el único medio de conocer lo que se producía en otras
regiones y países. Su función era, además, doble por lo que
respecta
al comercio porque eran a la vez que vendedores, compradores de
los
artículos propios del país que visitaban. Las ciudades con tal
motivo,
tomaban un aspecto inusitado, lleno de vida.
En el bazar de los zapateros, por ejemplo, no se podía entrar,
había sacos y cajas con mercancías amontonadas en los patios y
estanterías. Forasteros damascenos, con inmensos y abigarrados
turbantes, ostentando sus armas en la cintura, caminaban
descuidados mirando con indiferencia a los mercaderes. Se notaba
un
olor fuerte a incienso, a kif y a especias. Los vendedores
de
legumbres discutían, casi se agredían, profiriendo tremendas
maldiciones en siríaco.
Un joven guitarrista de Moscú, sentado en unos sacos, cantaba una
tonada monótona y triste:
Qué importa la vida de la gente
si la gente, para bien o para mal,
va viviendo simplemente
su vida.
Los vendedores, a la puerta de sus tiendas, pregonaban las
mercancías exaltándolas con elogios exagerados y fantásticos, con
la
fértil imaginación de los árabes.
-Este tejido, miradlo. ¡Digno del Emir…!
-¡Amigos; ahí tenéis un delicioso perfume que os recordará el
cariño de la esposa…!
-Mira, ¡Oh jeque!, estas chinelas y este lindo caftán que los djins
recomiendan a los ángeles.
Se interesó Beremiz por un elegante y armonioso turbante azul
claro que ofrecía un sirio medio corcovado, por 4 dinares. La
tienda
de este mercader era además muy original, pues todo allí –turbantes,
cajas, puñales, pulseras, etc.- era vendido a 4 dinares. Había un
letrero que decía con vistosas letras:
Los cuatro cuatros
Al ver a Beremiz interesado en comprar el turbante azul, le dije:
-Me parece una locura ese lujo. Tenemos poco dinero, y aún no
pagamos la hostería.
-No es el turbante lo que interesa, respondió Beremiz. Fíjate en
que esta tienda se llama “Los cuatro cuatros”. Es una
coincidencia
digna de la mayor atención.
-¿Coincidencia? ¿Por qué?
-La inscripción de ese cartel recuerda una de las maravillas del
Cálculo: empleando cuatro cuatros podemos formar un número
cualquiera…
Y antes de que le interrogara sobre aquel enigma, Beremiz explicó
mientras escribía en la arena fina que cubría el suelo:
-¿Quieres formar el cero? Pues nada más sencillo. Basta escribir:
44 – 44
Ahí tienes los cuatro cuatros formando una expresión que es igual
a cero.
Pasemos al número 1. Esta es la forma más cómoda
44
44
Esta fracción representa el cociente de la división de 44 por 44.
Y
este cociente es 1.
¿Quieres ahora el número 2? Se pueden utilizar fácilmente los
cuatro cuatros y escribir:
4 4
-- + --
4 4
La suma de las dos fracciones es exactamente igual a 2. El tres es
más difícil. Basta escribir la expresión:
4 + 4 + 4
4
Fíjate en que la suma es doce; dividida por cuatro da un cociente
de 3. Así pues, el tres también se forma con cuatro cuatros.
-¿Y cómo vas a formar el número 4? –le pregunté-.
-Nada más sencillo –explicó Beremiz-; el 4 puede formarse de
varias maneras diferentes. He ahí una expresión equivalente a 4.
4 - 4
4 + ----------
4
Observa que el segundo término
4 – 4
4
es nulo y que la suma es igual a 4. La expresión escrita equivale
a:
4 + 0, o sea 4.
Me di cuenta de que el mercader sirio escuchaba atento, sin perder
palabra, la explicación de Beremiz, como si le interesaran mucho
aquellas expresiones aritméticas formadas por cuatro cuatros.
Beremiz prosiguió:
-Quiero formar por ejemplo el número 5. No hay dificultad.
Escribiremos:
4 x 4 + 4
4
Esta fracción expresa la división de 20 por 4. Y el cociente es 5.
De
este modo tenemos el 5 escrito con cuatro cuatros.
Pasemos ahora al 6, que presenta una forma muy elegante:
4 + 4
---------- + 4
4
Una pequeña alteración en este interesante conjunto lleva al
resultado 7.
44
--- - 4
4
Es muy sencilla la forma que puede adoptarse para el número 8
escrito con cuatro cuatros:
4 + 4 + 4 – 4
El número 9 también es interesante:
4
4 + 4 + ---
4
Y ahora te mostraré una expresión muy bella, igual a 10, formada
con cuatro cuatros:
44 – 4
4
En este momento, el jorobado, dueño de la tienda, que había
seguido las explicaciones de Beremiz con un silencio respetuoso,
observó:
-Por lo que acabo de oír, el señor es un eximio matemático. Si es
capaz de explicarme cierto misterio que hace dos años encontré en
una suma, le regalo el turbante azul que quería comprarme. Y el
mercader narró la siguiente historia:
Presté una vez 100 dinares, 50 a un jeque de Medina y otros 50 a
un judío de El Cairo.
El medinés pagó la deuda en cuatro partes, del siguiente modo:
20, 15, 10 y 5, es decir:
Pagó 20 y quedó debiendo 30
“ 15 “ “ “ 15
“ 10 “ “ “ 5
“ 5 “ “ “ 0
Suma 50 Suma 50
Fíjese, amigo mío, que tanto la suma de las cuantías pagadas
como la de los saldos deudores, son iguales a 50.
El judío cairota pagó igualmente los 50 dinares en cuatro plazos,
del siguiente modo:
Pagó 20 y quedó debiendo 30
“ 18 “ “ “ 12
“ 3 “ “ “ 9
“ 9 “ “ “ 0
Suma 50 Suma 51
Conviene observar ahora que la primera suma es 50 –como en el
caso anterior-, mientras la otra da un total de 51. Aparentemente
esto no debería suceder.
No sé explicar esta diferencia de 1 que se observa en la segunda
forma de pago. Ya sé que no quedé perjudicado, pues recibí el
total
de la deuda, pero, ¿cómo justificar el que esta segunda suma sea
igual a 51 y no a 50 como en el primer caso?
-Amigo mío, explicó Beremiz, esto se explica con pocas palabras.
En las cuentas de pago, los saldos deudores no tienen relación
ninguna con el total de la deuda. Admitamos que la deuda de 50
fuera pagada en tres plazos, el primero de 10; el segundo de 5; y
el
tercero de 35. La cuenta con los saldos sería:
Pagó 10 y quedó debiendo 40
“ 5 “ “ “ 35
“ 35 “ “ “ 0
Suma 50 Suma 75
En este ejemplo, la primera suma sigue siendo 50, mientras la
suma de los saldos es, como véis, 75; podía ser 80, 99, 100, 260,
800 o un número cualquiera. Sólo por casualidad dará exactamente
50, como en el caso del jeque, o 51, como en el caso del judío.
El mercader quedó muy satisfecho por haber entendido la
explicación de Beremiz, y cumplió la promesa ofreciendo al
calculador
el turbante azul que valía cuatro dinares.
CAPITULO VIII
Donde Beremiz diserta sobre las formas geométricas. De
nuestro feliz encuentro con el jeque Salem Nassair y con
sus
amigos los criadores de ovejas. Beremiz resuelve el
problema
de las veintiuna vasijas y otro que causa el asombro de
los
mercaderes. Cómo se explica la desaparición de un dinar
de
una cuenta de treinta.
Se mostró Beremiz satisfechísimo al recibir el bello presente del
mercader sirio.
-Está muy bien hecho, dijo dando la vuelta al turbante y mirándolo
cuidadosamente por un lado y por otro. Tiene sin embargo un
defecto, en mi opinión, que podría ser evitado fácilmente. Su
forma
no es rigurosamente geométrica.
Lo miré sin poder esconder mi sorpresa. Aquel hombre, aquel
original calculador, tenía la manía de transformar las cosas más
vulgares hasta el punto de dar forma geométrica incluso a los
turbantes de los musulmanes.
-No se sorprenda, amigo mío, prosiguió el inteligente persa, de
que
quiera turbantes en formas geométricas. La Geometría está en
todas
partes. Fíjese en las
formas regulares y perfectas que presentan
muchos cuerpos. Las flores, las hojas e incontables animales
revelan
simetrías admirables que deslumbran nuestro espíritu.
La Geometría, repito, existe en todas partes: en el disco solar,
en
las hojas, en el arco iris, en la mariposa, en el diamante, en la
estrella de mar y hasta en un diminuto grano de arena. Hay, en
fin,
una infinita variedad de formas geométricas extendidas por la
naturaleza. Un cuervo que vuela lentamente por el cielo, describe
con
la mancha negra de su cuerpo figuras admirables. La sangre que
circula por las venas del camello no escapa tampoco a los rigurosos
principios geométricos, ya que sus glóbulos presentan la
singularidad
–única entre los mamíferos- de tener forma elíptica; la piedra que
se
tira al chacal importuno dibuja en el aire una curva perfecta,
denominada parábola; la abeja construye sus panales con la forma
de
prismas hexagonales y adopta esta forma geométrica, creo yo, para
obtener su casa con la mayor economía posible de material.
La Geometría existe, como dijo el filósofo, en todas partes. Es
preciso, sin embargo, tener ojos para verla, inteligencia para
comprenderla y alma para admirarla.
El rudo beduino ve las formas geométricas, pero no las entiende;
el
sunita las
entiende, pero no las admira; el artista, en fin, ve a la
perfección las figuras, comprende la Belleza, y admira el Orden y
la
Armonía. Dios fue el Gran Geómetra. Geometrizó el Cielo y la
Tierra.
Existe en Persia una planta muy apreciada como alimento por los
camellos y las ovejas, y cuya simiente…
Y siempre discurriendo, con entusiasmo, sobre la multitud de
bellezas que encierra la Geometría, fue Beremiz caminando por la
extensa y polvorienta carretera que va del Zoco de los Mercaderes
al
Puente de la Victoria. Yo lo acompañaba en silencio, embebido en
sus
curiosas enseñanzas.
Después de cruzar la Plaza Musaén, también llamada Refugio de
los Camelleros, avistamos la bella Hostería de las Siete Penas,
muy
frecuentada en los días calurosos por los viajeros y beduinos
llegados
de Damasco y de Mosul.
La parte mas pintoresca de esa Hostería de las Siete Penas era su
patio interior, con buena sombra para los días de verano, y cuyas
paredes estaban totalmente cubiertas de plantas de colores traídas
de las montañas del Líbano. Allí se vivía en un ambiente de
comodidad y de reposo.
En un viejo cartel de madera, junto al que los beduinos amarraban
sus camellos, se podía leer:
“HOSTERIA DE LAS
SIETE PENAS”
-¡Siete Penas!, murmuró Beremiz observando el cartel. ¡Es curioso!
¿Conoces por casualidad al dueño de esta hostería?
-Lo conozco muy bien, respondí. Es un viejo cordelero de Trípoli
cuyo padre sirvió en las tropas del sultán Queruán. Le llaman “El
Tripolitano”. Es bastante estimado, por su carácter sencillo y
comunicativo. Es hombre honrado y acogedor. Dicen que fue al
Sudán con una caravana de aventureros sirios y trajo de tierras
africanas cinco esclavos negros que le sirven con increíble
fidelidad.
Al regresar del Sudán dejó su oficio de cordelero y montó esta
hostería, siempre auxiliado por los cinco esclavos.
-Con esclavos o sin esclavos, replicó Beremiz ese hombre, el
Tripolitano, debe de ser bastante original. Puso en su hostería el
número siete para formar el nombre, y el siete fue siempre, para
todos los pueblos: musulmanes, cristianos, judíos, idólatras o
paganos, un número sagrado, por ser la suma del número “tres” –
que es divino- y el número “cuatro”- que simboliza el mundo
material. Y de esa relación resultan numerosas vinculaciones entre
elementos cuyo total es “siete”.
Siete las puertas del infierno;
Siete los días de la semana;
Siete los sabios de Grecia;
Siete los cielos que cubren el Mundo;
Siete los planetas;
Siete las maravillas del mundo.
E iba a proseguir el elocuente calculador con sus extrañas
observaciones sobre el número sagrado, cuando vimos a la puerta de
la hostería, a nuestro buen amigo, el jeque Salem Nasair, que
repetidamente nos llamaba con un gesto de la mano.
-Muy feliz me siento por haberte hallado ahora. ¡Oh Calculador!,
dijo risueño el jeque cuando nos acercamos a él. Tu llegada es
providencial, no solo para mí, sino también para estos tres amigos
que están aquí en la hostería.
Y añadió, con simpatía y visible interés.
-¡Pasad! ¡Venid conmigo, que el caso es muy difícil!
Nos hizo seguirle por el interior de la hostería a través de un
corredor sumido en la penumbra, húmedo, hasta que llegamos al
patio interior, acogedor y claro. Había allí cinco o seis mesas
redondas. Junto a una de estas mesas se hallaban tres viajeros.
Los hombres, cuando el jeque y el Calculador se aproximaron a
ellos, levantaron la cabeza e hicieron el salam. Uno de
ellos parecía
muy joven; era alto, delgado, de ojos claros y ostentaba un
bellísimo
turbante amarillo como la yema del huevo, con una barra blanca
donde lanzaba destellos una esmeralda de rara belleza; los otros
dos
eran bajos, de anchas espaldas y tenían la piel oscura, como los
beduinos de África.
Se diferenciaban de los demás tanto por su aspecto como por sus
vestidos. Estaban absortos en una discusión que a juzgar por los
ademanes era enconada como ocurre cuando la solución al problema
es difícil de hallar.
El jeque dirigiéndose a los tres musulmanes, dijo:
-¡Aquí tenemos al eximio Calculador!
Luego señalando a éstos añadió:
-¡Aquí están mis tres amigos! Son criadores de carneros y vienen
de Damasco. Se les plantea ahora uno de los más curiosos problemas
que haya visto en mi vida. Es el siguiente:
Como pago de un pequeño de lote de carneros recibieron aquí en
Bagdad, una partida de vino excelente, envasado en 21 vasijas
iguales, de las cuales se hallan:
7 llenas
7 mediadas
7 vacías
Quieren ahora repartirse estas 21 vasijas de modo que cada una
de ellos reciba el mismo número de vasijas y la misma cantidad de
vino.
Repartir las vasijas es fácil. Cada uno se quedará con siete. La
dificultad está, según entiendo, en repartir el vino sin abrir las
vasijas; es decir, dejándolas exactamente como están. ¿Será
posible,
¡oh Calculador!, hallar una solución satisfactoria a este
problema?
Beremiz, después de meditar en silencio durante dos o tres
minutos, respondió:
-El reparto de las 21 vasijas podrá hacerse, ¡oh jeque! sin
grandes
cálculos. Voy a indicarle la solución que me parece más sencilla.
Al
primer socio le corresponderán:
2 vasijas llenas;
1 mediada
3 vacías.
Recibirá así un total de 7 vasijas.
Al segundo socio le corresponderán:
2 vasijas llenas;
3 mediadas;
2 vacías.
Recibirá así también siete vasijas.
La parte que corresponderá al tercero será igual a la del segundo,
esto es:
2 vasijas llenas;
3 mediadas;
2 vacías.
Según la división que acabo de indicar cada socio recibirá 7
vasijas
e igual cantidad de vino. En efecto: Llamemos 2 –dos- a la porción
de
vino de una vasija llena, y 1 a la porción de vino de la vasija
mediada.
El primer socio recibirá, de acuerdo con la división:
2 + 2 + 2 + 1
y esa suma es igual a siete unidades de vino.
Cada uno de los otros dos socios recibirán:
2 + 2 + 1 + 1 + 1
y esa suma es también igual a 7 unidades de vino.
Esto viene a robar que la división que he sugerido es cierta y
justa.
El problema, que en apariencia es complicado, no ofrece la mayor
dificultad en cuanto a su resolución numérica.
La solución presentada por Beremiz fue recibida con mucho
agrado, no solo por el jeque, sino también por sus amigos
damacenos.
Exposición gráfica de la resolución del Problema de las
Veintiuna
Vasijas. La primera hilera está constituida por las siete
vasijas llenas,
la segunda por las siete vasijas medianas y la tercera por
las siete
vasijas vacías. La partición propuesta deberá efectuarse
siguiendo las
líneas punteadas.
-¡Por Allah!, exclamó el joven de la esmeralda. ¡Ese
calculador es
prodigioso! Resolvió en un momento un problema que nos parecía
dificilísimo.
Y volviéndose al dueño de la hostería, preguntó en tono muy
amistoso:
-Oye, Tripolitano. ¿Cuánto hemos gastado aquí, en esta mesa?
Respondió el interpelado:
-El gasto total, con la comida, fue de treinta dinares.
El jeque Nasair deseaba pagar él solo la cuenta, pero los
damacenos se negaron a que lo hiciera, entablándose una pequeña
discusión, un cambio de gentilezas, en el que todos hablaban y
protestaban al mismo tiempo. Al final se decidió que el jeque
Nasair,
que había sido invitado a la reunión, no contribuiría al gasto. Y
cada
uno de los damascenos pagó diez dinares. La cuenta total de 30
dinares fue entregada a un esclavo sudanés y llevada al
Tripolitano.
Al cabo de un momento volvió el esclavo y dijo:
-El patrón me ha dicho que se equivocó. El gasto asciende a 25
dinares. Me ha dicho, pues, que les devuelva estos cinco.
-Ese Tripolitano, observó Nasair, es honrado, muy honrado.
Y tomando las cinco monedas que habían sido devueltas, dio una a
cada uno de los damascenos y así de las cinco monedas sobraron
dos. Después de consultar con una mirada a los damascenos, el
jeque
las entregó como propina al esclavo sudanés que había servido el
almuerzo.
En este momento el joven de la esmeralda se levantó, y
dirigiéndose muy serio a los amigos, habló así:
-Con este asunto del pago de los treinta dinares de gasto nos
hemos armado un lío mayúsculo.
-¿Un lío? No hay ningún lío, se asombró el jeque. No veo por
dónde…
-Sí, confirmó el damasceno. Un lío muy serio y un problema que
parece absurdo. Desapareció un dinar. Fíjense. Cada uno de
nosotros
pagó en realidad solo 9 dinares. Somos tres: en consecuencia el
pago
total fue de 27 dinares. Sumando esos 27 dinares a los dos de la
propina que el jeque ha dado al esclavo sudanés, tenemos 29
dinares. De los 30 que le fueron dados al Tripolitano, solo
aparecen,
29. ¿Dónde está, pues, el otro dinar? ¿Cómo desapareció? ¿Qué
misterio es éste?
El jeque Nasair, al oír aquella observación, reflexionó:
-Es verdad, damasceno. A mi ver, tu raciocinio es cierto. Tienes
razón. Si cada uno de los amigos pagó 9 dinares, hubo un total de
27 dinares; con los 2 dinares dados al esclavo, resulta un total
de 29
dinares. Para 30 –total del pago inicial- falta uno. ¿Cómo
explicar
este misterio?
En este momento, Beremiz, que se mantenía en silencio, intervino
en el debate y dijo dirigiéndose al jeque:
-Está equivocado, jeque. La cuenta no se debe hacer de ese modo.
De los treinta dinares pagados al Tripolitano por la comida,
tenemos:
25 para el Tripolitano
2 devueltos
2 propina al
esclavo sudanés.
No desapareció nada y no puede haber el menor lío en una cuenta
tan sencilla. En otras palabras: De los 27 dinares pagados -9
veces 3,
25 quedaron con el Tripolitano y 2 fueron la propina del sudanés.
Los damascenos al oír la explicación de Beremiz, prorrumpieron en
estrepitosas carcajadas.
-¡Por los méritos del Profeta!, exclamó el que parecía más
viejo.
Este Calculador acabó con el misterio del dinar desaparecido y
salvó
el prestigio de esta vieja hostería… ¡allah!
CAPITULO IX
Donde se narran las circunstancias y los motivos de la
honrosa visita que nuestro amigo el jeque Iezid, el
Poeta, se
dignara hacernos. Extraña consecuencia de las
previsiones de
un astrólogo. La mujer y las Matemáticas. Beremiz es
invitado
a enseñar Matemáticas a una hermosa joven. Situación
singular de la misteriosa alumna. Beremiz habla de su
amigo y
maestro, el sabio Nô-Elim.
En el último día del Moharra, al caer la noche, vino a
buscarnos a
la hostería el prestigioso Iezid-Abdul-Hamid, amigo y confidene
del
Califa.
-¿Algún nuevo problema a resolver, jeque?, preguntó sonriente
Beremiz.
-¡Lo has adivinado, amigo mío!, respondió nuestro visitante. Me
encuentro ante un serio problema. Tengo una hija llamada Telassim,
dotada de viva inteligencia y de acentuada inclinación a los
estudios.
Cuando Telassim nació, consulté a un astrólogo famoso que sabía
desvelar el futuro mediante la observación de las nubes y las
estrellas. El mago me dijo que mi hijo viviría feliz hasta los 18
años.
A partir de esta edad, se vería amenazada por una serie de
lamentables desgracias. Pero había no obstante un medio de evitar
que la infelicidad viniera a turbar tan hondamente su destino.
Telassim –dijo el mago- debería aprender las propiedades de los
números y las múltiples operaciones que con ellos se efectúan.
Pero
para dominar los números y hacer cálculos, es preciso conocer la
ciencia de Al Kharismi, esto es la Matemática. Decidí pues
asegurarle
a Telassim un futuro feliz haciéndole estudiar los misterios del
Cálculo
y de la Geometría.
El generoso jeque hizo una ligera pausa y prosiguió luego:
-Busqué varios ulemas de la corte, pero no logré encontrar ni uno
que se viera capaz de enseñar Geometría a una joven de 17 años.
Uno de ellos dotado sin embargo de gran talento, intentó incluso
disuadirme de mi propósito: “Quién intentara enseñar a cantar a
una
jirafa –me dijo- cuyas cuerdas vocales son incapaces de producir
el
menor ruido, perdería lamentablemente el tiempo y haría un trabajo
nútil. La jirafa jamás cantará. Y el cerebro femenino –me dijo el
daroes- es
incompatible con las más sencillas nociones de Cálculo y
de Geometría. Esta incomparable ciencia se basa en el raciocinio,
en
el empleo de fórmulas y en la aplicación de principios
demostrables
con los poderosos recursos de la Lógica y de las proporciones.
¿Cómo
va a poder una muchacha encerrada en el harén de su padre
aprender las fórmulas del álgebra y los teoremas de la Geometría?
¡Nunca! Es más fácil para una ballena ir a La Meca en
peregrinación
que para una mujer aprender Matemáticas. ¿Para qué luchar contra
lo imposible? ¡Maktub! “Si la desgracia ha de caer sobre
nosotros,
hágase la voluntad de Allah…”
El jeque, muy serio, se levantó de su cojín y caminó cinco o seis
pasos hacia un lado y otro. Luego prosiguió con melancolía aún
mayor.
-El desánimo, el gran corruptor, se apoderó de mi espíritu al oír
estas palabras. No obstante, yendo un día a visitar a mi buen
amigo
Salem Nasair, el mercader, oí elogiosas referencias sobre el nuevo
calculador persa que había llegado a Bagdad. Me habló del episodio
de los ocho panes. El caso, narrado con todo detalle, me
impresionó
profundamente. Procuré conocer el calculador de los ocho panes y
fui
a esperarle especialmente a casa del visir Maluf. Y quedé
asombrado
ante la original solución dada al problema de los 257 camellos,
reducidos al final a 256. ¿Te acuerdas?
Y el jeque Iezud, alzando el rostro y mirando solemnemente al
calculador, añadió:
-¿Serés capaz, ¡oh hermano de los árabes!, de enseñar los
artificios del Cálculo a mi hija Telassim? Te pagaré por las
lecciones el
precio que me pidas. Y podrás, como hasta ahora, seguir ejerciendo
el cargo de secretario del visir Maluf.
-¡Oh jeque generoso!, replicó prontamente Beremiz. No veo motivo
para dejar de atender a su honrosa invitación. En pocos meses
podré
enseñar a su hija todas las operaciones algebraicas y los secretos
de
la Geometría. Se equivocan doblemente los filósofos cuando creen
medir con unidades negativas la capacidad intelectual de la mujer.
La
inteligencia femenina, cuando se halla bien orientada, puede
acoger
con incomparable perfección las bellezas y secretos de la ciencia.
Fácil tarea sería desmentir los conceptos injustos formulados por
el
daroes. Los
historiadores citan varios ejemplos de mujeres que
destacaron en el cultivo de la Matemáticas. En Alejandría, por
ejemplo, vivió Hiparía, que enseñó la ciencia del Cálculo a
centenares
de personas, comentó las obras de Diáfano, analizó los
dificilísimos
trabajos de Apólonio y rectificó todas las tablas astronómicas
entonces empleadas. No hay motivo para incertidumbre o temor, ¡oh
jeque! Su hija aprenderá fácilmente la ciencia de Pitágoras.
¡Inch’Allah! Solo espero que determine el día y hora en que
tengo
que iniciar las lecciones.
El noble Iezid le respondió:
-¡Lo antes posible! Telassim ya cumplió 17 años, y estoy ansioso
de librarla de las tristes previsiones de los astrólogos.
Y añadió:
-He de advertirte, sin embargo, de una particularidad que no deja
de tener su importancia. Mi hija vive encerrada en el harén y
jamás
fue vista por ningún hombre extraño a nuestra familia. Solo podrá
asistir a las clases de Matemáticas oculta tras un espeso tapiz y
con
el rostro cubierto por un velo y vigilada por dos esclavas de
confianza. ¿Aceptas, a pesar de esta condición, mi propuesta?
-Acepto con viva satisfacción, respondió Beremiz. Es evidente que
el recato y el pudor de una joven valen más que los cálculos y las
fórmulas algebraicas. Platón, el filósofo, mandó colocar a la
puerta de
su escuela el siguiente secreto: “Nadie entre si no sabe
Geometría”.
Un día se presentó un joven de costumbres libertinas y mostró
deseos de frecuentar la Academia platónica. El maestro, sin
embargo,
se negó a admitirlo, diciendo: “La Geometría es toda ella pureza y
simplicidad. Y tu falta de pudor ofende a una ciencia tan pura”.
El
célebre discípulo de Sócrates procuraba de ese modo demostrar que
la Matemática no armoniza con la depravación y con la torpe
indignidad de los espíritus inmortales. Serán, pues, encantadoras
las
lecciones dadas a esa joven que no conozco y cuyo rostro jamás
tendré la fortuna de admirar. Si Allah quiere, mañana mismo podré
empezar las clases.
-Perfectamente, repuso el jeque. Uno de mis siervos vendrá
mañana a buscarte poco después de la oración segunda. ¡Uassalam!
Cuando el jeque Iezid abandonó la hostería, interpelé al
calculador
porque me pareció que el compromiso era superior a sus fuerzas.
-Escucha Beremiz. Hay en todo esto un punto oscuro para mí.
¿Cómo vas a poder enseñar Matemáticas a una joven cuando en
verdad nunca estudiaste esta ciencia en los libros ni asististe a
las
lecciones de los ulemas? ¿Cómo lograste aprender el cálculo que
aplicas con tanta brillantez y oportunidad? Bien sé, ¡oh Calculador!,
que empezaste a desvelar los misterios de la Matemática entre
ovejas, higueras y bandadas de pájaros cuando eras pastor allá en
tu
tierra…
-¡Estás equivocado, bagdalí!, reconsideró con serenidad el
calculador. Mientras vigilaba los rebaños de mi amo, allá en
Persia,
conocí a un viejo derviche llamado Nô-Elim. Una vez lo salvé de la
muerte en medio de una violenta tempestad de arena. Desde
entonces fue mi mejor amigo. Era un gran sabio y me enseñó cosas
útiles y maravillosas.
Después de las lecciones que recibí de tal maestro, me siento
capaz de enseñar Geometría hasta el último libro del inolvidable
Euclides Alejandrino.
CAPITULO X
De nuestra llegada al Palacio de Iezid. El rencoroso
Tara-Tir
desconfía de los cálculos de Beremiz. Los pájaros
cautivos y
los números perfectos. El Hombre que Calculaba exalta la
caridad del jeque. De una melodía que llegó a nuestros
oídos,
llena de melancolía y añoranza como las endechas de un
ruiseñor solitario.
Pasaba muy poco tiempo de la cuarta hora cuando dejamos la
hostería y tomamos el camino de la casa de Iezid-Abul-Hamid.
Guiados por el siervo amable y diligente, atravesamos rápidamente
las calles tortuosas del barrio de Muassan y llegamos a un lujoso
palacio constituido en medio de un atractivo parque.
Beremiz quedó maravillado del aire distinguido que el rico Iezid,
procuraban dar a su residencia. En el centro del parque se erguía
una
gran cúpula plateada donde los rayos del sol se deshacían en
bellísimos efectos policromos. Un gran patio, cerrado por un
fuerte
portón de hierro ornado con los más bellos detalles del arte, daba
entrada al interior del edificio.
Un segundo patio interior, que tenía en el centro un bien cuidado
jardín, dividía el edificio en dos pabellones. Uno de ellos estaba
ocupado por los aposentos particulares; el otro estaba destinado a
los
salones de reunión y a la sala donde el jeque se reunía a menudo
con
ulemas, poetas y visires.
El palacio del jeque, a pesar de la ornamentación artística de las
columnas, era triste y sombrío. Quien se fijara en las ventanas
enrejadas no podría apreciar las pompas del arte con que todos los
aposentos estaban interiormente revestidos.
Una larga galería con arcadas, sustentada por nueve o diez
esbeltas columnas de mármol blanco, con arcos de herradura,
zócalos
de azulejos sin relieve y el piso de mosaico, comunicaba los dos
pabellones y dos soberbias escaleras de honor, también de mármol
blanco, llevaban al jardín, donde había un manso lago rodeado de
flores de formas y perfumes diversos.
Una gran jaula llena de pájaros, ornada también de arabescos de
mosaico, parecía ser la pieza más importante del jardín. Había
allí
aves de canto exótico, formas singulares y rutilante plumaje.
Algunas, de peregrina belleza, pertenecían a especies desconocidas
para mí.
Nos recibió, muy cordialmente, el dueño de la casa llegando a
nuestro encuentro desde el jardín. Le acompañaba un joven moreno,
flaco, de anchos hombros, que no demostró demasiada amabilidad en
su comportamiento. Ostentaba en la cintura un riquísimo puñal con
empuñadura de marfil. Tenía una mirada penetrante y agresiva. Su
manera de hablar, agitada e inquieta, resultaba muy desagradable.
-¡Vaya! ¿Así que es ese el calculador? Observó subrayando sus
palabras con un tono de desdén. ¡Qué buena fe tienes, querido
Iezid!
¿Y vas a permitir que un mendigo cualquiera se acerque y dirija la
palabra a la bella Telassim? ¡Es lo que faltaba! ¡Por Allah! ¡Mira
que
eres ingenuo!
Y prorrumpió en una injuriosa carcajada.
Aquella grosería me indignó y me dieron ganas de acabar a
puñetazos con la descortesía de aquel atrevido. Beremiz, sin
embargo, no perdió la calma. Era incluso posible que el calculador
descubriera en aquel momento, en las palabras insultantes que
acababa de oír, nuevos elementos para hacer cálculos y resolver
problemas.
El poeta, molesto por la actitud poco delicada de su amigo, dijo:
-Perdona, Calculador, el juicio precipitado de mi primo el-hadj
Tara-Tir. El no conoce y, por tanto, no puede valorar debidamente,
tu
capacidad matemática, y está más preocupado ue cualquier otro por
el futuro de Telassim.
El joven exclamó:
-¡Pues claro que no conozco los talentos matemáticos de este
extranjero! No me importa en absoluto saber cuántos camellos pasan
por Bagdad en busca de sombra y alfalfa, replicó el iracundo
Tara-Tir
con aire desdeñoso y sonriendo torvamente.
Y luego, hablando de prisa, atropellándose las palabras, continuó:
-Puedo probar en pocos minutos, querido primo, que estás
completamente equivocado con respecto a la capacidad de este
aventurero. Si me lo permites, voy a acabar con su ciencia
fundamentada en dos o tres banalidades que oí a un maestro de
Mosul.
-¡Claro que sí!, ¿por qué no ha de permitírtelo?, consistió Iezid.
Ahora mismo puedes interrogar a nuestro Calculador y plantearle el
problema que se te ocurra.
-¿Problemas? ¿Para qué? ¿Quieres confrontar la ciencia que aúlla?,
exclamó groseramente. Te aseguro que no va a ser necesario
inventar ningún problema para desenmascarar al sufista ignorante.
Llegaré al resultado que pretendo sin necesidad de fatigar la
memoria, y mucho antes de lo que piensas.
Y señalando hacia la gran pajarera interpeló a Beremiz clavando en
él sus ojos menudos que destelleaban con fuerza inexorable y fría.
-¡Respóndeme, “Calculador del Anade”. ¿Cuántos pájaros hay en
esa pajarera?
Beremiz Samir se cruzó de brazos y se puso a observar con viva
atención el vivero indicado. Sería prueba de locura –pensé
yointentar
contar los pájaros que revoloteaban inquietos por la jaula,
saltando con increíble ligereza de una percha a otra.
Se hizo un silencio expectante.
Al cabo de unos segundos, el calculador se volvió hacia el
generoso
Iezid y le dijo:
-Os ruego, ¡oh jeque!, que mandéis soltar inmediatamente a tres
de esos pájaros cautivos; será así más sencillo y agradable para
mí
anunciar el número total…
Aquella petición tenía todo el aire de un disparate. Es lógico que
quien sea capaz de contar cierto número podrá contarlo también con
tres unidades más.
Iezid, intrigadísimo con la inesperada petición del Calculador,
hizo
venir al encargado de la pajarera y dio orden de que fuera
atendida la
petición de Beremiz. Liberados de la prisión, tres lindos
colibríes
volaron raudos hacia el cielo.
-Ahora hay en esta pajarera, declaró Beremiz en tono pausado,
cuatrocientos noventa y seis pájaros.
-¡Admirable!, exclamó Iezid con entusiasmo. ¡La cifra exacta! ¡Y
Tara-Tir lo sabe! Yo se lo dije: medio millar exacto había en mi
colección. Ahora, libres los tres que soltamos y un ruiseñor que
mandé a Moscú, quedan 496…
-Acertó por casualidad, refunfuñó Tara-Tir con gesto de rencor.
El poeta Iezid, instigado por la curiosidad, le preguntó a
Beremiz:
-¿Puedes decirme, amigo, por qué preferiste contar 496, cuando
tan sencillo eran sumar 496 + 3, o decir simplemente 489?
-Te lo explicaré ¡oh jeque!, respondió con orgullo Beremiz. Los
matemáticos procuran siempre dar preferencia a los números
notables y evitar resultados inexpresivos o vulgares. Pero entre
el
499 y el 496 no hay duda posible. El número 496 es un número
perfecto y debe merecer toda nuestra preferencia.
-¿Y qué quiere decir un número perfecto?, preguntó el poeta. ¿En
qué consiste la perfección de un número?
-Número perfecto, explicó Beremiz, es el que presenta la propiedad
de ser igual a la suma de sus divisores, excluyéndose claro está,
de
entre ellos el propio número.
Así, por ejemplo, el número 28 presenta 5 divisores menores que
28:
1, 2, 4, 7, 14
La suma de esos divisores:
1 + 2 + 4 + 7 + 14
es precisamente igual a 28. Luego 28 pertenece a la categoría de
los números perfectos.
El número 6 también es perfecto. Los divisores de 6 –menores de
6- son:
1, 2 y 3
cuya suma es 6.
Al lado del 6 y del 28 puede figurar el 496 que es también, como
ya dije, un número perfecto.
El rencoroso Tara-Tir sin querer oír las nuevas explicaciones de
Beremiz, se despidió del jeque Iezid y se retiró mascullando con
ira,
pues no había sido pequeña su derrota ante la pericia del
Calculador.
Al pasar ante mí me miró de soslayo con aire de soberano
desprecio.
-Te ruego, ¡oh calculador!, se disculpó una vez más el noble
Iezid,
que no te sientas ofendido por las palabras de mi primo Tara-Tir.
Es
un hombre de temperamento exaltado y desde que asumió la
dirección de las minas de sal, en Al-Derid, se ha vuelto irascible
y
violento. Ya sufrió cinco atentados y varias agresiones de
esclavos.
Era evidente que el inteligente Beremiz no quería causar molestias
al jeque. y respondió, lleno de mansedumbre y bondad:
-Si deseamos vivir en paz con el prójimo tenemos que refrenar
nuestra ira y cultivar la mansedumbre. Cuando me siento herido por
la injuria, procuro seguir el sabio precepto de Salomón:
El necio al punto descubre su cólera;
el sensato sabe disimular su afrenta.
Jamás podré olvidar las enseñanzas de mi bondadoso padre.
Siempre que me veía exaltado y deseoso de venganza, me decía:
“Quien se humilla ante los hombres se vuelve glorioso ante Dios”.
Y después de una pequeña pausa, añadió:
-Le estoy muy agradecido, sin embargo, al rudo Tara-Tir, y no le
guardo el menor resentimiento. Su turbulento carácter me ha
proporcionado ocasión de practicar nueve actos de caridad.
-¿Nueve actos de caridad?, se sorprendió el jeque. ¿Y cómo fue
eso?
-Cada vez que ponemos en libertad a un pájaro cautivo, explicó
Beremiz, practicamos tres actos de caridad. El primero para con la
avecilla, devolviéndola a la vida amplia y libre que le había sido
arrebatada, el segundo para con nuestra conciencia, y el tercero
para
con Dios…
-Quieres decir entonces que si yo diera libertad a todos esos
pájaros de la pajarera…
-Te aseguro que practicarías, ¡oh jeque!, mil cuatrocientos
ochenta
y ocho actos de elevada caridad… exclamó Beremiz prontamente,
como si ya supiese de memoria el producto de 496 por 3.
Impresionado por esas palabras, el generoso Iezid determinó que
fuesen puestas en libertad todas las aves que se hallaban en la
gran
jaula.
Los siervos y esclavos quedaron asombrados al oír aquella orden.
La colección, formada con paciencia y esfuerzo, valía una fortuna.
En
ella figuraban perdices, colibríes, faisanes multicolores,
gaviotas
negras, patos de Madagascar, lechuzas del Cáucaso y varios tipos
de
golondrinas rarísimas de China y de la India.
-¡Suelten los pájaros!, ordenó de nuevo el jeque agitando su mano
resplandeciente de anillos.
Se abrieron las amplias puertas de tela metálica. La cautivas aves
dejaron la prisión en bandada y se extendieron por la arboleda del
jardín.
Dijo entonces Beremiz:
-Cada ave, con sus alas extendidas, es un libro de dos hojas
abierto en el cielo. Feo crimen es robar o destruir esa
menuda
biblioteca de Dios.
Comenzamos entonces a oír las notas de una canción. La voz era
tan tierna y suave que se confundía con el trino de las leves
golondrinas y con el arrullo de las mansas palomas.
Al principio era una melodía encantadora y triste, llena de
melancolía y añoranza, como las endechas de un ruiseñor solitario.
Se animaba luego en un crescendo vivo con gorjeos complicados,
trinos argentinos, entrecortados gritos de amor que contrastaban
con
la serenidad de la tarde y resonaban por el espacio como hojas
llevadas por el viento. Después volvió el primer tono, triste y
doliente
y parecía resonar por el jardín con un leve suspiro:
Si hablara yo las lenguas de los hombres
y de los ángeles
y no tuvieracaridad,
sería como el metal que suena
o como la campana que tañe.
¡nada sería!...
¡nada sería!...
Si tuviera yo el don de la profecía
y toda la ciencia,
de tal modo que transportase los montes
y yo tuviese caridad,
¡nada sería!...
¡nada sería!...
Si distribuyese mis bienes todos
para sustento de los pobres,
y entregase mi cuerpo para ser quemado,
y no tuviese caridad,
¡nada sería!...
¡nada sería!...
El encanto de aquella voz parecía envolver la tierra en una onda
de
indefinible alegría. Hasta el día parecía haberse vuelto más
claro.
-Es Telassim quien canta, explicó el jeque al ver la atención con
que escuchábamos arrebatados aquella extraña canción.
Los pájaros revoloteaban llenando el aire con sus alegres trinos
de
libertad. Eran sólo 496, pero daban la impresión de ser diez mil…
Beremiz estaba absorto. En su espíritu sensible penetraron las
notas de la canción, uniéndose a la felicidad que le había
deparado la
liberación de los pájaros. Luego, alzó los ojos buscando de dónde
partía aquella voz.
-¿Y de quién son esos bellísimos versos?, pregunté.
El jeque respondió:
-No sé. Una esclava cristiana se lo enseñó a Telassim, y ella no
lo
olvidó ya más. Deben de ser de algún poeta nazareno. Eso me dijo
hace días la hija
de mi tío, madre de Telassim.
CAPITULO X
De nuestra llegada al Palacio de Iezid. El rencoroso
Tara-Tir
desconfía de los cálculos de Beremiz. Los pájaros
cautivos y
los números perfectos. El Hombre que Calculaba exalta la
caridad del jeque. De una melodía que llegó a nuestros
oídos,
llena de melancolía y añoranza como las endechas de un
ruiseñor solitario.
Pasaba muy poco tiempo de la cuarta hora cuando dejamos la
hostería y tomamos el camino de la casa de Iezid-Abul-Hamid.
Guiados por el siervo amable y diligente, atravesamos rápidamente
las calles tortuosas del barrio de Muassan y llegamos a un lujoso
palacio constituido en medio de un atractivo parque.
Beremiz quedó maravillado del aire distinguido que el rico Iezid,
procuraban dar a su residencia. En el centro del parque se erguía
una
gran cúpula plateada donde los rayos del sol se deshacían en
bellísimos efectos policromos. Un gran patio, cerrado por un
fuerte
portón de hierro ornado con los más bellos detalles del arte, daba
entrada al interior del edificio.
Un segundo patio interior, que tenía en el centro un bien cuidado
jardín, dividía el edificio en dos pabellones. Uno de ellos estaba
ocupado por los aposentos particulares; el otro estaba destinado a
los
salones de reunión y a la sala donde el jeque se reunía a menudo
con
ulemas, poetas y visires.
El palacio del jeque, a pesar de la ornamentación artística de las
columnas, era triste y sombrío. Quien se fijara en las ventanas
enrejadas no podría apreciar las pompas del arte con que todos los
aposentos estaban interiormente revestidos.
Una larga galería con arcadas, sustentada por nueve o diez
esbeltas columnas de mármol blanco, con arcos de herradura,
zócalos
de azulejos sin relieve y el piso de mosaico, comunicaba los dos
pabellones y dos soberbias escaleras de honor, también de mármol
blanco, llevaban al jardín, donde había un manso lago rodeado de
flores de formas y perfumes diversos.
Una gran jaula llena de pájaros, ornada también de arabescos de
mosaico, parecía ser la pieza más importante del jardín. Había
allí
aves de canto exótico, formas singulares y rutilante plumaje.
Algunas, de peregrina belleza, pertenecían a especies desconocidas
para mí.
Nos recibió, muy cordialmente, el dueño de la casa llegando a
nuestro encuentro desde el jardín. Le acompañaba un joven moreno,
flaco, de anchos hombros, que no demostró demasiada amabilidad en
su comportamiento. Ostentaba en la cintura un riquísimo puñal con
empuñadura de marfil. Tenía una mirada penetrante y agresiva. Su
manera de hablar, agitada e inquieta, resultaba muy desagradable.
-¡Vaya! ¿Así que es ese el calculador? Observó subrayando sus
palabras con un tono de desdén. ¡Qué buena fe tienes, querido
Iezid!
¿Y vas a permitir que un mendigo cualquiera se acerque y dirija la
palabra a la bella Telassim? ¡Es lo que faltaba! ¡Por Allah! ¡Mira
que
eres ingenuo!
Y prorrumpió en una injuriosa carcajada.
Aquella grosería me indignó y me dieron ganas de acabar a
puñetazos con la descortesía de aquel atrevido. Beremiz, sin
embargo, no perdió la calma. Era incluso posible que el calculador
descubriera en aquel momento, en las palabras insultantes que
acababa de oír, nuevos elementos para hacer cálculos y resolver
problemas.
El poeta, molesto por la actitud poco delicada de su amigo, dijo:
-Perdona, Calculador, el juicio precipitado de mi primo el-hadj
Tara-Tir. El no conoce y, por tanto, no puede valorar debidamente,
tu
capacidad matemática, y está más preocupado ue cualquier otro por
el futuro de Telassim.
El joven exclamó:
-¡Pues claro que no conozco los talentos matemáticos de este
extranjero! No me importa en absoluto saber cuántos camellos pasan
por Bagdad en busca de sombra y alfalfa, replicó el iracundo
Tara-Tir
con aire desdeñoso y sonriendo torvamente.
Y luego, hablando de prisa, atropellándose las palabras, continuó:
-Puedo probar en pocos minutos, querido primo, que estás
completamente equivocado con respecto a la capacidad de este
aventurero. Si me lo permites, voy a acabar con su ciencia
fundamentada en dos o tres banalidades que oí a un maestro de
Mosul.
-¡Claro que sí!, ¿por qué no ha de permitírtelo?, consistió Iezid.
Ahora mismo puedes interrogar a nuestro Calculador y plantearle el
problema que se te ocurra.
-¿Problemas? ¿Para qué? ¿Quieres confrontar la ciencia que aúlla?,
exclamó groseramente. Te aseguro que no va a ser necesario
inventar ningún problema para desenmascarar al sufista ignorante.
Llegaré al resultado que pretendo sin necesidad de fatigar la
memoria, y mucho antes de lo que piensas.
Y señalando hacia la gran pajarera interpeló a Beremiz clavando en
él sus ojos menudos que destelleaban con fuerza inexorable y fría.
-¡Respóndeme, “Calculador del Anade”. ¿Cuántos pájaros hay en
esa pajarera?
Beremiz Samir se cruzó de brazos y se puso a observar con viva
atención el vivero indicado. Sería prueba de locura –pensé
yointentar
contar los pájaros que revoloteaban inquietos por la jaula,
saltando con increíble ligereza de una percha a otra.
Se hizo un silencio expectante.
Al cabo de unos segundos, el calculador se volvió hacia el
generoso
Iezid y le dijo:
-Os ruego, ¡oh jeque!, que mandéis soltar inmediatamente a tres
de esos pájaros cautivos; será así más sencillo y agradable para
mí
anunciar el número total…
Aquella petición tenía todo el aire de un disparate. Es lógico que
quien sea capaz de contar cierto número podrá contarlo también con
tres unidades más.
Iezid, intrigadísimo con la inesperada petición del Calculador,
hizo
venir al encargado de la pajarera y dio orden de que fuera
atendida la
petición de Beremiz. Liberados de la prisión, tres lindos
colibríes
volaron raudos hacia el cielo.
-Ahora hay en esta pajarera, declaró Beremiz en tono pausado,
cuatrocientos noventa y seis pájaros.
-¡Admirable!, exclamó Iezid con entusiasmo. ¡La cifra exacta! ¡Y
Tara-Tir lo sabe! Yo se lo dije: medio millar exacto había en mi
colección. Ahora, libres los tres que soltamos y un ruiseñor que
mandé a Moscú, quedan 496…
-Acertó por casualidad, refunfuñó Tara-Tir con gesto de rencor.
El poeta Iezid, instigado por la curiosidad, le preguntó a
Beremiz:
-¿Puedes decirme, amigo, por qué preferiste contar 496, cuando
tan sencillo eran sumar 496 + 3, o decir simplemente 489?
-Te lo explicaré ¡oh jeque!, respondió con orgullo Beremiz. Los
matemáticos procuran siempre dar preferencia a los números
notables y evitar resultados inexpresivos o vulgares. Pero entre
el
499 y el 496 no hay duda posible. El número 496 es un número
perfecto y debe merecer toda nuestra preferencia.
-¿Y qué quiere decir un número perfecto?, preguntó el poeta. ¿En
qué consiste la perfección de un número?
-Número perfecto, explicó Beremiz, es el que presenta la propiedad
de ser igual a la suma de sus divisores, excluyéndose claro está,
de
entre ellos el propio número.
Así, por ejemplo, el número 28 presenta 5 divisores menores que
28:
1, 2, 4, 7, 14
La suma de esos divisores:
1 + 2 + 4 + 7 + 14
es precisamente igual a 28. Luego 28 pertenece a la categoría de
los números perfectos.
El número 6 también es perfecto. Los divisores de 6 –menores de
6- son:
1, 2 y 3
cuya suma es 6.
Al lado del 6 y del 28 puede figurar el 496 que es también, como
ya dije, un número perfecto.
El rencoroso Tara-Tir sin querer oír las nuevas explicaciones de
Beremiz, se despidió del jeque Iezid y se retiró mascullando con
ira,
pues no había sido pequeña su derrota ante la pericia del
Calculador.
Al pasar ante mí me miró de soslayo con aire de soberano
desprecio.
-Te ruego, ¡oh calculador!, se disculpó una vez más el noble
Iezid,
que no te sientas ofendido por las palabras de mi primo Tara-Tir.
Es
un hombre de temperamento exaltado y desde que asumió la
dirección de las minas de sal, en Al-Derid, se ha vuelto irascible
y
violento. Ya sufrió cinco atentados y varias agresiones de
esclavos.
Era evidente que el inteligente Beremiz no quería causar molestias
al jeque. y respondió, lleno de mansedumbre y bondad:
-Si deseamos vivir en paz con el prójimo tenemos que refrenar
nuestra ira y cultivar la mansedumbre. Cuando me siento herido por
la injuria, procuro seguir el sabio precepto de Salomón:
El necio al punto descubre su cólera;
el sensato sabe disimular su afrenta.
Jamás podré olvidar las enseñanzas de mi bondadoso padre.
Siempre que me veía exaltado y deseoso de venganza, me decía:
“Quien se humilla ante los hombres se vuelve glorioso ante Dios”.
Y después de una pequeña pausa, añadió:
-Le estoy muy agradecido, sin embargo, al rudo Tara-Tir, y no le
guardo el menor resentimiento. Su turbulento carácter me ha
proporcionado ocasión de practicar nueve actos de caridad.
-¿Nueve actos de caridad?, se sorprendió el jeque. ¿Y cómo fue
eso?
-Cada vez que ponemos en libertad a un pájaro cautivo, explicó
Beremiz, practicamos tres actos de caridad. El primero para con la
avecilla, devolviéndola a la vida amplia y libre que le había sido
arrebatada, el segundo para con nuestra conciencia, y el tercero
para
con Dios…
-Quieres decir entonces que si yo diera libertad a todos esos
pájaros de la pajarera…
-Te aseguro que practicarías, ¡oh jeque!, mil cuatrocientos
ochenta
y ocho actos de elevada caridad… exclamó Beremiz prontamente,
como si ya supiese de memoria el producto de 496 por 3.
Impresionado por esas palabras, el generoso Iezid determinó que
fuesen puestas en libertad todas las aves que se hallaban en la
gran
jaula.
Los siervos y esclavos quedaron asombrados al oír aquella orden.
La colección, formada con paciencia y esfuerzo, valía una fortuna.
En
ella figuraban perdices, colibríes, faisanes multicolores,
gaviotas
negras, patos de Madagascar, lechuzas del Cáucaso y varios tipos
de
golondrinas rarísimas de China y de la India.
-¡Suelten los pájaros!, ordenó de nuevo el jeque agitando su mano
resplandeciente de anillos.
Se abrieron las amplias puertas de tela metálica. La cautivas aves
dejaron la prisión en bandada y se extendieron por la arboleda del
jardín.
Dijo entonces Beremiz:
-Cada ave, con sus alas extendidas, es un libro de dos hojas
abierto en el cielo. Feo crimen es robar o destruir esa
menuda
biblioteca de Dios.
Comenzamos entonces a oír las notas de una canción. La voz era
tan tierna y suave que se confundía con el trino de las leves
golondrinas y con el arrullo de las mansas palomas.
Al principio era una melodía encantadora y triste, llena de
melancolía y añoranza, como las endechas de un ruiseñor solitario.
Se animaba luego en un crescendo vivo con gorjeos complicados,
trinos argentinos, entrecortados gritos de amor que contrastaban
con
la serenidad de la tarde y resonaban por el espacio como hojas
llevadas por el viento. Después volvió el primer tono, triste y
doliente
y parecía resonar por el jardín con un leve suspiro:
Si hablara yo las lenguas de los hombres
y de los ángeles
y no tuvieracaridad,
sería como el metal que suena
o como la campana que tañe.
¡nada sería!...
¡nada sería!...
Si tuviera yo el don de la profecía
y toda la ciencia,
de tal modo que transportase los montes
y yo tuviese caridad,
¡nada sería!...
¡nada sería!...
Si distribuyese mis bienes todos
para sustento de los pobres,
y entregase mi cuerpo para ser quemado,
y no tuviese caridad,
¡nada sería!...
¡nada sería!...
El encanto de aquella voz parecía envolver la tierra en una onda
de
indefinible alegría. Hasta el día parecía haberse vuelto más
claro.
-Es Telassim quien canta, explicó el jeque al ver la atención con
que escuchábamos arrebatados aquella extraña canción.
Los pájaros revoloteaban llenando el aire con sus alegres trinos
de
libertad. Eran sólo 496, pero daban la impresión de ser diez mil…
Beremiz estaba absorto. En su espíritu sensible penetraron las
notas de la canción, uniéndose a la felicidad que le había
deparado la
liberación de los pájaros. Luego, alzó los ojos buscando de dónde
partía aquella voz.
-¿Y de quién son esos bellísimos versos?, pregunté.
El jeque respondió:
-No sé. Una esclava cristiana se lo enseñó a Telassim, y ella no
lo
olvidó ya más. Deben de ser de algún poeta nazareno. Eso me dijo
hace días la hija
de mi tío, madre de Telassim.
CAPITULO XI
De cómo inició Beremiz sus lecciones de Matemáticas. Una
frase de Platón. La Unidad es Dios. ¿Qué es medir? Las
partes
de la Matemática. La Aritmética y los Números. El
Álgebra y
las relaciones. La Geometría y las formas. La Mecánica y
la
Astronomía. Un sueño del rey Asad-Abu-Carib. La “alumna
invisible” eleva una oración a Allah.
El aposento donde Beremiz había de dar sus clases era muy
espacioso. Estaba dividido por un amplio y pesado cortinaje de
terciopelo rojo que colgaba desde el techo hasta llegar al suelo.
El
techo estaba coloreado y las columnas eran doradas. Sobre las
alfombras se hallaban extendidos grandes cojines de seda, bordados
con textos del Corán.
Las paredes estaban adornadas con caprichosos arabescos azules
entrelazados con bellos poemas de Antar, el poeta del desierto. En
el
centro, entre dos columnas, se leía en letras de oro sobre fondo
azul
este dístico, procedente de la moalakat de Antar:
Cuando Allah ama a uno de sus siervos, le abre las puertas
de la
inspiración.
Se notaba un perfume suave de incienso y rosas. Declinaba la
tarde.
Las ventanas de mármol pulido estaban abiertas y dejaban ver el
jardín y los frondosos manzanos que se extendían hasta el río de
aguas turbias y tristes.
Una esclava negra se mantenía en pie, con el rostro descubierto,
junto a la puerta. Sus uñas estaban pintadas con henna.
-¿Se encuentra ya presente tu hija?, preguntó Beremiz a jeque.
-Desde luego, respondió Iezid. Le dije que se colocara al otro
lado
del aposento, detrás del tapiz, desde donde podrá ver y oír.
Estará
invisible, sin embargo, para todos los que aquí se encuentran.
Realmente las cosas estaban dispuestas de tal modo que ni
siquiera se notaba la silueta de la joven que iba a ser discípula
de
Beremiz. Posiblemente ella nos observara desde algún minúsculo
orificio hecho en la pieza de terciopelo, imperceptible para
nosotros.
-Creo que ya podemos empezar, dijo el jeque.
y dijo con voz cariñosa:
-Procura estar atenta, Telassim, hija mía…
-Sí, padre, respondió una bien timbrada voz femenina al otro lado
del aposento.
Beremiz se dispuso entonces a comenzar sus lecciones; cruzó las
piernas y se sentó en un cojín en el centro de la sala. Yo me
coloqué
discretamente en un rincón y me acomodé como pude. A mi lado se
sentó el jeque Iezid.
Toda ciencia va precedida por la plegaria. Fue, pues, con una
plegaria como Beremiz inició sus clases.
-¡En nombre de Allah, Clemente y Misericordioso! ¡Loado
sea el
Omnipotente Creador de todos los mundos! ¡La misericordia
de Dios
es nuestro atributo supremo! ¡Te adoramos, Señor, e
imploramos Tu
asistencia! ¡Condúcenos por el camino cierto! ¡Por el
camino de los
iluminados y bendecidos por Ti!
Terminada la plegaria, Beremiz habló así:
-Cuando miramos, señora, hacia el cielo en una noche en calma y
límpida, sentimos que nuestra inteligencia es incapaz para
comprender la obra maravillosa del Creador. Ante nuestros ojos
pasmados, las estrellas forman una caravana luminosa que desfila
por el desierto insondable del infinito, ruedan las nebulosas
inmensas
y los planetas, siguiendo leyes eternas, por los abismos del
espacio, y
surge ante nosotros una idea muy nítida: la noción de “número”.
Vivió antaño en Grecia, cuando aquel país estaba dominado por el
paganismo, un filósofo notable llamado Pitágoras -¡Más sabio es
Allah!-. Consultado
por un discípulo sobre las fuerzas dominantes de
los destinos de los hombres, el sabio respondió: “Los números
gobiernan el mundo”.
Realmente. El pensamiento más simple no puede ser formulado sin
encerrar en él bajo múltiples aspectos, el concepto fundamental de
número. El beduino que en medio del desierto, en el momento de la
plegaria, murmura el nombre de Dios, tiene su espíritu dominado
por
un número: ¡la “Unidad”! ¡Sí, Dios, según la verdad expresada en
las
páginas del Libro Santo y repetida por los labios del Profeta, es
Uno,
Eterno e Inmutable! Luego, el número aparece en el marco de
nuestra inteligencia como símbolo del Creador.
Del número, señora, que es base de su razón y del entendimiento,
surge otra noción de indiscutible importancia: la noción de “medida”.
Medir, señora, es comparar. Sólo son, sin embargo, susceptibles de
medida las magnitudes que admiten un elemento como base de
comparación. ¿Será posible medir la extensión del espacio? De
ninguna maneta. El espacio es infinito, y siendo así, no admite
término de comparación. ¿Será posible medir la Eternidad? De
ninguna manera. Dentro de las posibilidades humanas, el tiempo es
siempre infinito y en el cálculo de la Eternidad no puede lo efímero
servir de unidad de medida.
En muchos casos, sin embargo, nos será posible representar una
dimensión que no se adapta a los sistemas de medidas por otra que
puede ser estimada con seguridad. Esa permuta de dimensiones, con
vistas a simplificar los procesos de medida, constituye el objeto
principal de una ciencia que los hombres llaman Matemáticas.
Para alcanzar nuestro objetivo, la Matemática tiene que estudiar
los números, sus propiedades y transformaciones. Esta parte toma
el
nombre de Aritmética. Conocidos los números, es posible aplicarlos
a
la evaluación de dimensiones que varían o que son desconocidas,
pero que se pueden representar por medio de relaciones y fórmulas.
Tenemos así el Álgebra. Los valores que medimos en el campo de la
realidad son representados por cuerpos materiales o por símbolos;
en
cualquier caso, estos cuerpos o símbolos están dotados de tres
atributos: forma, tamaño y posición. Es importante, ues, estudiar
tales atributos. Eso constituirá el objeto de la Geometría.
También se interesa la Matemática por las leyes que rigen los
movimientos y las fuerzas, leyes que aparecen en la admirable
ciencia que se llama Mecánica.
La Matemática pone todos sus preciosos recursos al servicio de una
ciencia que eleva el alma y engrandece al hombre. Esa ciencia es
la
Astronomía.
Suponer algunos que, dentro de los Matemáticas, la Aritmética, el
Álgebra y la Geometría constituyen partes enteramente distintas;
es
un grave error. Todas se auxilian mutuamente, se apoyan las unas
en
las otras, y, en algunos casos, incluso se confunden.
Las Matemáticas, señora, que enseñan al hombre a ser sencillo y
modesto, son la base de todas las ciencias y artes.
Un episodio ocurrido con un famoso monarca yemenita es bastante
expresivo y voy a narrarlo:
Assad-Abu-Carib, rey del Yemen, hallándose cierto día
descansando en el amplio mirador de su palacio, soñó que había
encontrado a siete jóvenes que caminaban por una senda. En cierto
momento, vencidas por la fatiga y por la sed, las jóvenes se
detuvieron bajo el ardiente sol del desierto. Surgió en este
momento
una hermosa princesa que se acercó a las peregrinas llevándoles un
cántaro de agua pura y fresca. La bondadosa princesa sació la sed
que torturaba a las jóvenes y éstas reanimadas, pudieron reanudar
su jornada interrumpida.
Al despertar, impresionado por ese inexplicable sueño, determinó
Assad-Abu-Carib llamar a un astrólogo famoso, llamado Sanib, y le
consultó sobre la significación de aquella escena a la que él –rey
poderoso y justo- había asistido en el mundo de las visiones y de
las
fantasías. Y dijo Sanib, el astrólogo: “¡Señor!, las siete jóvenes
que
caminaban por la senda eran las artes divinas y las ciencias
humanas; la Pintura, la Música, la Escultura, la Arquitectura, la
Retórica, la Dialéctica y la Filosofía. La princesa caritativa que
las
socorrió era la grande y prodigiosa Matemática”. “Sin el auxilio
de la
Matemática –prosiguió el sabio- las artes no pueden avanzar, y
todas
las otras ciencias perecen”. Impresionado por estas palabras,
determinó el rey que se organizaran en todas las ciudades, oasis y
aldeas del país centros de estudio de Matemáticas. Hábiles y
elocuentes ulemas, por orden del soberano, acudían a los bazares y
a
los paradores de las caravanas a dar lecciones de Aritmética a los
caravaneros y beduinos. Al cabo de pocos meses se notó que el país
despertaba en un prodigioso impulso de prosperidad. Paralelamente
al progreso de la ciencia crecían los recursos materiales; las
escuelas
estaban llenas de alumnos, el comercio se desarrollaba de manera
prodigiosa; se multiplicaban las obras de arte; se alzaban
monumentos; las ciudades vivían repletas de ricos forasteros y
curiosos. El país del Yemen estaba abierto al progreso y a la
riqueza,
pero vino la fatalidad -¡Maktub!- a poner término a aquel
despliegue
prodigioso, de trabajo y prosperidad. El rey Assad-Abu-Carib cerró
los
ojos para el mundo y fue llevado por el impío Asrail al
cielo de Allah.
La muerte del soberano hizo abrir dos túmulos: uno de ellos acogió
el
cuerpo del glorioso monarca y el otro fue a parar la cultura
artística y
científica de su pueblo. Subió al trono un príncipe vanidoso,
indolente
y de escasas dotes intelectuales. Se preocupaba por las vanas
diversiones mucho más que por los problemas de la administración
del país. Pocos meses después, todos los servicios públicos
estaban
desorganizados; las escuelas cerradas; los artistas y los ulemas,
forzados a huir bajo las amenazas de perversos y ladrones. El
tesoro
público fue criminalmente dilapidado en ociosos festines y
banquetes
desenfrenados. El país fue llevado a la ruina por el desgobierno y
al
fin cayó bajo el ataque de enemigos ambiciosos que lo sometieron
fácilmente.
La historia de Assad-Abu-Carib, señora, viene a demostrar que el
progreso de un pueblo se halla ligado al desarrollo de los
estudios
matemáticos. En todo el universo, la Matemática es número y
medida. La Unidad, símbolo del Creador, es el principio de todas
las
cosas que no existen sino en virtud de las inmutables proporciones
y
relaciones numéricas. Todos los grandes enigmas de la vida pueden
reducirse a simples combinaciones de elementos variables o
constantes, conocidos o incógnitos que nos permitan resolverlos.
Para que podamos comprender la ciencia, precisamos tomar por
base el número. Veamos cómo estudiarlo, con ayuda de Allah,
Clemente y Misericordioso.
¡Uassalan!
Con estas palabras se calló el calculador dando por terminada su
primera clase de Matemáticas.
Oímos entonces con agradable sorpresa la voz de la alumna, oculta
e invisible tras el cortinaje de terciopelo, que pronunciaba la
siguiente
oración:
-“¡Oh Dios Omnipotente!, Creador del Cielo y de la Tierra, perdona
la pobreza, la pequeñez, la puerilidad de nuestros corazones. No
escuches nuestras palabras pero sí nuestros gemidos inexpresables;
no atiendas nuestras peticiones, sino el clamor de nuestras
necesidades. ¡Cuántas veces soñamos con tener aquello que nunca
podrá ser nuestro!”
“¡Dios es omnipotente!”
“¡Oh Dios! Te agradecemos este mundo, nuestro gran hogar, su
amplitud y riquezas, la vida multiforme que en él se estudia y de
la
que todos nosotros formamos parte. Te alabamos por el esplendor
del
cielo azul y por la brisa de la tarde y por las nubes y por las
constelaciones en las alturas. Te loamos, Señor, por los océanos
inmensos, por el agua que corre en los arroyos, por las montañas
eternas, por los árboles frondosos y por la hierba tupida en que
nuestros pies reposan.
“¡Dios es misericordioso!”
Te agradecemos, Señor, los múltiples encantos con que podemos
sentir en nuestra alma las bellezas de la Vida y del Amor…”
“¡Oh Dios Clemente y Misericordioso! Perdona la pobreza, la
pequeñez, la puerilidad de nuestros corazones…”
CAPITULO XII
En el que Beremiz revela gran interés por el juego de la
comba. La curva del Morazán y las arañas. Pitágoras y el
círculo. Nuestro encuentro con Harim Namir. El problema
de
los sesenta melones. Cómo el vequil perdió la apuesta.
La voz
del muezin ciego llama a los creyentes a la oración del
mogreb.
Cuando salimos del hermoso palacio del poeta Iezid era casi la
hora de ars. Al pasar junto al morabito Ramih oímos un
suave gorjeo
de pájaros entre las ramas de una vieja higuera.
-Mira. Seguro que son algunos de los liberados hoy, le dije a
Beremiz. Es un placer oír convertida en canto esta alegría de la
libertad reconquistada.
Beremiz sin embargo, no parecía interesarse en aquel momento de
la puesta del sol por los cantos de los pájaros de la enramada. Su
atención estaba absorbida por un grupo de niños que jugaban en una
calle próxima. Dos de los pequeños sostenían por los extremos un
pedazo de cuerda fina que tendría cuatro o cinco codos. Los otros
se
esforzaban en saltar por encima de ella, mientras los primeros la
colocaban unas veces más baja, otras más alta, según la agilidad
del
que saltaba.
-¡Mira la cuerda, bagdalí!, dijo el Calculador cogiéndome del
brazo.
Mira la curva perfecta. ¿No te parece digna de estudio?
-¿A qué te refieres? ¿A la cuerda acaso?, exclamé. No veo nada de
extraordinario en esa ingenua diversión de niños que aprovechan
las
últimas luces del día para su recreo…
-Pues bien, amigo mío, convéncete de que tus ojos son ciegos para
las mayores bellezas y maravillas de la naturaleza. Cuando los
niños
alzan la cuerda, sosteniéndola por los extremos y dejándola caer
libremente por la acción de su propio peso, la cuerda forma una
curva
que tiene su interés, pues surge como resultado de la acción de
fuerzas naturales. Ya otras veces observé esa curva, que el sabio
Nö-
Elim llamaba marazán, en las telas y en la joroba de
algunos
dromedarios. ¿Tendrá esta curva alguna analogía con las derivadas
de la parábola? En el futuro, si Allah lo quiere, los
geómetras
descubrirán medios de trazar esta curva punto por punto y
estudiarán
con rigor todas sus propiedades…
Hay, sin embargo, prosiguió, muchas otras curvas más
importantes. En primer lugar el círculo. Pitágoras, filósofo y
geómetra
griego, consideraba el círculo como la curva más perfecta,
vinculando
así el círculo a la perfección. Y el círculo, siendo la curva más
perfecta
entre todas, es la de trazado más sencillo.
Beremiz en este momento, interrumpiendo la disertación apenas
iniciada sobre las curvas, me indicó un muchacho que se hallaba a
escasa distancia y gritó:
-¡Harim Namir!
El joven se volvió rápidamente y se dirigió, alegre, a nuestro
encuentro. Me di cuenta entonces de que se trataba de uno de los
tres hermanos que habíamos encontrado discutiendo en el desierto
por la herencia de 35 camellos; división complicada, llena de
tercios y
nonos, que Beremiz resolvió por medio de un curioso artificio al
que
ya tuve ocasión de aludir.
-¡Mac Allah!, exclamó Harim dirigiéndose a Beremiz. El
destino nos
manda al gran calculador. Mi hermano Hamed no acaba de poner en
claro una cuenta de 60 melones que nadie sabe resolver.
Y Harim nos llevó hacia una casita donde se hallaba su hermano
Hamed Namir con varios mercaderes.
Hamed se mostró muy satisfecho al ver a Beremiz, y, volviéndose
a los mercaderes, les dijo:
-Este hombre que acaba de llegar es un gran matemático. Gracias
a su valioso auxilio conseguimos solución para un problema que nos
parecía imposible: dividir 35 camellos entre tres personas. Estoy
seguro de que él podrá explicar en pocos minutos la diferencia que
encontramos en la venta de los 60 melones.
Beremiz fue informado minuciosamente del caso. Uno de los
mercaderes explicó:
-Los dos hermanos, Harim y Hamed, me encargaron que vendiera
en el mercado dos partidas de melones. Harim me entregó 30
melones que debían ser vendidos al precio de 3 por 1 dinar; Hamed
me entregó también 30 melones para los que estipuló un precio más
caro: 2 melones por 1 dinar. Lógicamente, una vez efectuada la
venta Harim tendría que recibir 10 dinares, y su hermano 15. El
total
de la venta sería pues 25 dinares.
Sin embargo, al llegar a la feria, apareció una duda ante mi
espíritu.
Si empezaba la venta por los melones más caros, pensé, iba a
perder la clientela. Si empezaba la venta por los más baratos,
luego
iba a verme en dificultades para vender los otros treinta. Lo
mejor,
única solución para el caso, era vender las dos partidas al mismo
tiempo.
Llegado a esta conclusión, reuní los sesenta melones y empecé a
venderlos en lotes de 5 por 2 dinares. El negocio se justificaba
mediante un raciocinio muy simple. Si tenía que vender 3 por 1 y
luego 2 por 1, sería más sencillo vender 5 por 2 dinares.
Vendidos los 60 melones en 12 lotes de cinco cada uno, recibí 24
dinares.
¿Cómo pagar a los dos hermanos si el primero tenía que recibir 10
y el segundo 15 dinares?
Había una diferencia de 1 dinar. No se cómo explicarme esta
diferencia, pues como dije, el negocio fue efectuado con el mayor
cuidado. ¿No es lo mismo vender 3 por 1 dinar y luego 2 por otro
dinar que vender 5 por 2 dinares?
-El caso no tendría importancia alguna intervino Hamed Namir, si
no fuera la intervención absurda del vequil que vigila en
la feria. Ese
vequil, oído el caso,
no supo explicar la diferencia en la cuenta y
apostó cinco dinares a que esa diferencia procedía de la falta de
un
melón que había sido robado durante la venta.
-Está equivocado el vequil, dijo Beremiz, y tendrá que
pagar los
dinares de la apuesta. La diferencia a que llegó el vendedor
resulta de
lo siguiente:
La partida de Harim se componía de 10 lotes de 3 melones cada
uno. Cada lote debe ser vendido por 1 dinar. El total de la venta
serían 10 dinares.
La partida de Hamed se componía de 15 lotes de dos melones cada
uno, que, vendidos a 1 dinar cada lote, daban un total de 15
dinares.
Fíjense en que el número de lotes de una partida no es igual al
número de lotes de la otra.
Para vender los melones en lotes de cinco solo los 10 primeros
lotes podrían ser vendidos a razón de 5 por dos dinares; una vez
vendidos esos 10 lotes, quedan aún 10 melones que pertenecen
exclusivamente a la partida de Hamed y que, siendo de más elevado
precio, tendrían que ser vendidos a razón de 2 por 1 dinar.
La diferencia de 1 dinar resultó pues de la venta de los 10
últimos
melones. En consecuencia: no hubo robo. De la desigualdad del
precio entre las partes resultó un perjuicio de 1 dinar, que quedó
reflejado en el resultado final.
Exposición gráfica de la resolución del Problema de los
Sesenta
Melones. “A” representa los treinta melones entregados por
Harim y
que, según lo ordenado, debían ser vendidos a razón de
tres por un
dinar. “B” representa los otros treinta melones entregados
por
Hamed, y cuyo precio fue fijado a razón de dos por un
dinar.
Podemos comprobar que solo diez lotes de cinco melones
cada uno –
tres de “A” y dos de “B”- podían ser vendidos a razón de
dos dinares
cada uno. Los dos últimos lotes comprenderán solo melones
del
grupo B y por consiguiente de mayor precio.
En ese momento tuvimos que interrumpir la reunión. La voz del
muezín, cuyo eco
vibraba en el espacio, llamaba a los fieles a la
oración de la tarde.
-¡Hai al el-salah! ¡Hai al el-salah!
Cada uno de nosotros procuró sin pérdida de tiempo hacer el guci
ritual, según determina el Libro Santo.
El sol se hallaba ya en la línea del horizonte. Había llegado la
hora
del mogreb.
Desde la tercera almena de la mezquita de Omar, el muezín ciego,
con voz pausada y ronca, llamaba a los creyentes a oración:
-¡Allah es grande y Mahoma, el Profeta es el verdadero
enviado de
Dios! ¡Venid a la oración, musulmanes! ¡Venid a la
oración! ¡Recordad
que todo es polvo, excepto Allah!.
Los mercaderes, precedidos por Beremiz extendieron sus alfombras
policromas, se quitaron las sandalias, se volvieron en dirección a
la
Ciudad Santa, y
exclamaron:
-¡Allah, Clemente y Misericordioso! ¡Alabado sea el
Omnipotente
Creador de los mundos visibles e invisibles! ¡Condúcenos por
el
camino recto, por el camino de aquellos que son por Ti
amparados y
bendecidos!
CAPITULO XIII Que trata de nuestra visita al palacio del Califa y de la audiencia que se dignó concedernos. De los poetas y la amistad. De la amistad entre los hombres y de la amistad entre los números. El Hombre que Calculaba es elogiado por el Califa de Bagdad. Cuatro días después, por la mañana, nos informaron de que seríamos recibidos en audiencia solemne por el Califa Abul-AbasAhmed Al-Motacén Billah, Emir de los Creyentes, Vicario de Allah. Aquella comunicación, tan grata para cualquier musulmán, era ansiosamente esperada no sólo por mí, sino también por Beremiz. Es posible que el soberano, al oír al jeque Iezid narrar alguna de las proezas practicadas por el eximio matemático, hubiera mostrado interés en conocer al Hombre que Calculaba. No se puede explicar de otro modo nuestra presencia en la corte entre las figuras de más prestigio de la alta sociedad de Bagdad. Quedé deslumbrado al entrar en el rico palacio del Emir. Las amplias arcadas superpuestas, formando curvas en armoniosa concordancia y sustentadas por altas y esbeltas columnas germinadas, estaban adornadas, en los puntos de donde surgían, con finísimos mosaicos. Pude notar que dichos mosaicos estaban formados por fragmentos de loza blancos y roja, alternando con tramos de estuco. Los techos de los salones principales estaban adornados de azul y oro; las paredes de todas las salas se hallaban cubiertas de azulejos en relieve, y los pavimentos, de mosaico. Las celosías, los tapices, los divanes, en fin todo lo que constituía el mobiliario de palacio demostraba la magnificencia insuperable de un príncipe de leyenda hindú. Allá fuera, en los jardines, reinaba la misma pompa, realzada por la mano de la naturaleza, perfumada por mil aromas diversos, cubierta de alfombras verdes, bañada por el río, refrescada por innumerables fuentes de mármol blanco junto a las que trabajaban sin cesar miles de esclavos. Fuimos conducidos al diván de las audiencias por uno de los auxiliares del visir Ibrahim Maluf. Al llegar, descubrimos al poderoso monarca sentado en un riquísimo trono de marfil y terciopelo. Me turbó en cierto modo la belleza deslumbrante del gran salón. Todas las paredes estaban adornadas con inscripciones admirables realizadas por el arte caprichoso de un calígrafo genial. Las leyendas aparecían en relieve sobre un fondo azul claro, en letras negras y rojas. Noté que aquellas inscripciones eran versos de los más brillantes poetas de nuestra tierra. Por todas partes había jarrones de flores; en los cojines, flores deshojadas, y también flores en las alfombras o en las bandejas de oro primorosamente cinceladas. Ricas y numerosas columnas ostentábanse allí, orgullosas con sus capiteles y fustes alegremente ornados por el cincel de los artistas arábigo-españoles, que sabían, como nadie, multiplicar ingeniosamente las combinaciones de las figuras geométricas asociadas a hojas y flores de tulipán, de azucenas y de mil plantas diversas, en una armonía maravillosa y de indecible belleza. Se hallaban presentes siete visires, dos cadíes, varios ulemas y diversos dignatarios ilustres y de alto prestigio. El honorable Maluf tenía que hacer nuestra presentación. El Visir, con los codos en la cintura y las flacas manos abiertas con la palma hacia fuera, habló así: -Para atender vuestra orden ¡oh Rey del Templo! Determiné que compareciesen hoy en esta excelsa audiencia el calculador Beremiz Samir, mi actual secretario, y su amigo Hank-Tadé-Maiá, auxiliar de escriba y funcionario del palacio. -¡Sed bienvenidos, oh musulmanes!, respondió el sultán con acento sencillo y amistoso. Admiro a los sabios. Un matemático, bajo el cielo de este país, contará siempre con mi simpatía y, si preciso fuera, con mi decidida protección. -¡Allah badique iá sidi!, exclamó Beremiz, inclinándose ante el rey. Yo quedé inmóvil, con la cabeza inclinada y los brazos cruzados, pues no habiendo sido objeto de los elogios del soberano, no podía tener el honor de dirigirle el saludo. El hombre que tenía en sus manos el destino del pueblo árabe parecía bondadoso y sin prejuicios. Tenía el rostro magro, curtido por el sol del desierto y surcado por prematuras arrugas. Al sonreír, cosa que hacía con relativa frecuencia, mostraba sus dientes blanquísimos y regulares. Iba vestido con sencillez. Llevaba en la cintura, bajo la faja de seda, un bello puñal cuya empuñadura iba adornada con piedras preciosas. El turbante era verde con pequeñas barras blancas. El color verde –como todos saben- caracteriza a los descendientes de Mahoma, el Santo Profeta -¡Con El la paz y la gloria!-. -Muchas cosas importantes quiero aclarar en esta audiencia, dijo el Califa. No quiero, sin embargo, iniciar los trabajos y discutir los altos problemas políticos sin recibir antes una prueba clara y precisa de que el matemático persa recomendado por mi amigo el poeta Iezid, es realmente un grande y hábil calculador. Interpelado de ese modo por el glorioso monarca, Beremiz se sintió en el deber imperioso de corresponder brillantemente a la confianza que el jeque Iezid había depositado en él. Dirigiéndose, pues, al sultán le dijo: -No soy yo ¡oh Comendador de los Creyentes! Más que un rudo pastor que acaba de verse distinguido con vuestra atención. Y tras una corta pausa, siguió: -Creen, sin embargo, mis generosos amigos que es justo incluir mi nombre entre los calculadores, y me siento lisonjeado por tan alta distinción. Pienso, sin embargo, que los hombres son en general buenos calculadores. Calculador es el soldado que en campaña valora con una sola mirada la distancia de una parasanga; calculador es el poeta que cuenta las sílabas y mide la cadencia de los versos; calculador es el músico que aplica en la división de los compases las leyes de la perfecta armonía; calculador es el pintor que traza las figuras según proporciones invariables para atender a los principios de perspectiva; calculador es el humilde esterero que dispone uno por uno todos los hilos de su trabajo. Todos en fin ¡oh rey! Son buenos y hábiles calculadores… Y luego de pasear su noble mirada por los cortesanos que rodeaban el trono, prosiguió Beremiz: -Veo con infinita alegría que estáis, señor, rodeado de ulemas y doctores. Veo a la sombra de vuestro poderoso trono hombres de valer que cultivan el estudio y dilatan las fronteras de paciencia. La compañía de los sabios ¡oh rey! es para mí el más grato tesoro. El hombre solo vale por lo que sabe. Saber es poder. Los sabios educan por el ejemplo, y nada hay que avasalle al espíritu humano de manera más suave y convincente que el ejemplo. No debe sin embargo, cultivar el hombre la ciencia si no es para utilizarla en la práctica del bien. Sócrates, filósofo griego, afirmaba con el peso de su autoridad: “Sólo es útil el conocimiento que nos hace mejores”. Séneca, otro pensador famoso, se preguntaba incrédulo: “¿Qué importa saber lo qué es una línea recta si no se sabe lo que es la rectitud?” Permitid pues, ¡oh rey generoso y justo! que rinda homenaje a los doctores y ulemas que se hallan en este salón. Hizo entonces el calculador una pausa muy breve y siguió elocuente, en tono solemne: -En los trabajos de cada día, observando las cosas que Allah sacó del No-Ser para llevarlas al Ser, aprendí a valorar los números y transformarlos por medio de reglas prácticas y seguras. Me siento, sin embargo, en dificultad para presentar la prueba que acabáis de exigir. Confiando, sin embargo, en vuestra proverbial generosidad, he de decir no obstante que no veo en este rico diván sino demostraciones admirables y elocuentes de que la matemática existe en todas partes. Adornan las paredes de este bello salón varios poemas que encierran precisamente un total de 504 palabras, y una parte de estas palabras está trazada en caracteres negros y la restante en caracteres rojos. El calígrafo que dibujó las letras de estos poemas haciendo la descomposición de las 504 palabras, demostró tener tanto talento e imaginación como los poetas que escribieron estos versos inmortales. ¡Si, oh rey magnífico!, prosiguió Beremiz. Y la razón es muy sencilla. Encuentro en estos versos incomparables que adornan este espléndido salón, grandes elogios sobre la Amistad. Puedo leer allí, cerca de la columna, la frase inicial de la célebre cassida de Mohalhil: Si mis amigos huyeran de mí, muy infeliz sería, pues de mí huirían todos los tesoros. Un poco más allá, leo el pensamiento de Tarafa: El encanto de la vida depende únicamente de las buenas amistades que cultivamos. A la izquierda destaca el incisivo verso de Labid, de la tribu de Amir-Ibn-Sassoa: La buena amistad es para el hombre como el agua límpida y clara para el sediento beduino. Si, todo esto es sublime, profundo y elocuente. La mayor belleza reside sin embargo en el ingenioso artificio empleado por el calígrafo para demostrar que la amistad que los versos exaltan no solo existe entre los seres dotados de vida y sentimiento. La Amistad se presenta también entre los números. ¿Cómo descubrir, preguntaréis sin duda, entre los números aquellos que están prendidos en las redes de la amistad matemática? ¿De qué medios se sirve el geómetra para apuntar en la serie numérica los elementos ligados por ese vínculo? En pocas palabras podré explicaros en qué consiste el concepto de los números amigos en Matemáticas. Consideremos, por ejemplo, los números 220 y 284. El número 220 es divisible exactamente por los siguientes números: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110 Estos son los divisores del número 220 con excepción del mismo. El número 284 es, a su vez, divisible exactamente por los siguientes números: 1, 2, 4, 71 y 142 Esos son los divisores del número 284, con excepción del mismo. Pues bien, hay entre estos dos números coincidencias verdaderamente notables. Si sumáramos los divisores de 220 arriba indicados, obtendríamos una suma igual a 284; si sumamos los divisores de 284, el resultado será exactamente 220. De esta relación, los matemáticos llegaron a la conclusión de que los números 220 y 284 son “amigos”, es decir, que cada uno de ellos parece existir para servir, alegrar, defender y honrar al otro. Y concluyó el calculador: -Pues bien, rey generoso y justo, las 504 palabras que forman el elogio poético de la Amistad fueron escritas de la siguiente forma: 220 en caracteres negros y 284 en caracteres rojos. Y los números 220 y 284 son, como ya expliqué, números amigos. Y fíjense aún en una relación no menos impresionante. Las 50 palabras completan, como es fácil comprobar, 32 leyendas diferentes. Pues bien, la diferencia entre 284 y 220 es 64, número que, aparte de ser cuadrado y cubo, es precisamente igual al doble del número de las leyendas dibujadas. Un incrédulo diría que se trata de simple coincidencia, pero el que cree en Dios y tenga la gloria de seguir las enseñanzas del Santo Profeta Mahoma -¡Con El sea la oración y la paz!- sabe que las llamadas coincidencias no serían posible si Allah no las escribiera en el libro del Destino. Afirmo pues que el calígrafo, al descomponer el número 504 en dos partes -220 y 284-, escribió sobre la amistad un poema que emociona a todos los hombres de claro espíritu. Al oír las palabras del calculador, el Califa quedó extasiado. Era increíble que aquel hombre contase, de una ojeada, las 504 palabras de los 30 versos y que, al contarlas, comprobase que había 220 de color negro y 284 de color rojo. -Tus palabras, ¡oh Calculador!, declaró el rey, me han llevado a la certeza de que en verdad eres el geómetra de alto valor. He quedado encantado con esa interesante relación que los algebristas llaman “amistad numérica”, y estoy ahora interesado en descubrir quién fue el calígrafo que escribió, al hacer la decoración de este salón, los versos que sirven de adorno a estas paredes. Es fácil comprobar si la descomposición de las 504 palabras en partes que corresponden a números amigos fue hecha adrede o resultó un capricho del Destino – obra exclusiva de Allah, el Exaltado-. Y haciendo que se aproximara al trono uno de sus secretarios, el sultán Al-Motacén le preguntó: -¿Recuerdas, ¡oh Nuredin Zarur!, quién fue el calígrafo que trabajó en este palacio? -Lo conozco muy bien, Señor: vive junto a la mezquita de Otman, respondió prontamente el jeque. -¡Tráelo pues aquí, ¡oh Sejid!, lo antes posible!, ordenó el califa. Quiero interrogarle de inmediato. -¡Escucho y obedezco! Y el secretario salió, rápido como una saeta, a cumplir la orden del soberano. CAPITULO XIV De cuanto nos sucediera en el Salón del Trono. Los músicos y las bailarinas gemelas. Como Beremiz pudo reconocer a Iclimia y Tabessa. Un visir envidioso critica a Beremiz. El Hombre que Calculaba elogia a los teóricos y a los soñadores. El rey proclama la victoria de la teoría sobre el inmediatismo vulgar. Después de que el jeque Nuredin Zarur -el emisario del reypartiera en busca del calígrafo que había escrito los poemas que decoraban el salón, entraron en él cinco músicos egipcios que ejecutaron con gran sentimiento las más tiernas canciones y melodías árabes. Mientras los músicos hacían vibrar sus laúdes, arpas, cítaras y flautas, dos graciosas bailarinas djalicianas, danzaban para gozo de todos en un vasto tablado de forma circular. Las esclavas destinadas a la danza eran particularmente escogidas y muy apreciadas pues constituían el mayor ornato y distracción, tanto para la satisfacción personal como para obsequiar a los huéspedes. Las danzas eran distintas según el origen de las bailarinas y su variedad era clara señal de riqueza y poderío. Una virtud muy estimada era el parecido físico entre ellas para lo cual era menester una cuidadosa y esmerada selección. La semejanza entre ambas esclavas resultaba sorprendente para todos. Ambas tenían el mismo talle esbelto, el mismo rostro moreno, los mismos ojos pintados de khol negro; ostentaban pendientes, pulseras y collares exactamente iguales y, para completar la confusión, tampoco en sus trajes se notaba la menor diferencia. En un momento dado, el Califa, que parecía de buen humor, se dirigió a Beremiz y le dijo: -¿Qué te parecen mis lindas adjamis? Ya te habrás dado cuenta de que son parecidísimas. Una se llama Iclimia y la otra Tabessa. Son gemelas y valen un tesoro. No encontré hasta hoy quien fuera capaz de distinguir con seguridad una de la otra cuando saludan desde el tablado tras la danza. Iclimia, ¡fíjate bien!, es la que está ahora a la derecha; Tabessa está a la izquierda, junto a la columna, y nos dirige ahora su mejor sonrisa. Por el color de su piel, por el perfume delicado que exhala, parece un tallo de áloe. -Confieso, ¡oh jeque del Islam!, respondió Beremiz, que estas bailarinas son realmente maravillosas. Alabado sea Allah, el Unico, que creó la belleza para con ella modelar las seductoras formas femeninas. De la mujer hermosa, dijo el poeta: Es para tu lujo la tela que los poetas fabrican con el hilo de oro de sus imágenes; y los pintores crean para tu hermosura nueva inmortalidad. Para adornarte, para vestirte, para hacerte más preciosa, da el mar sus perlas, la tierra su oro, el jardín sus flores. Sobre tu juventud, el deseo del Corazón de los hombres derramó su gloria. -Me parece, no obstante, ponderó el Calculador, bastante fácil distinguir a Iclimia de su hermana Tabessa. Basta fijarse en los trajes. -¿Cómo es posible?, repuso el sultán. Por los trajes no se podrá distinguir la menor diferencia, pues ambas, por orden mía, visten velos, blusas y mahzmas idénticos. -Os ruego que me perdonéis, ¡oh rey, generoso!, opuso cortésmente Beremiz, pero las costureras no acataron vuestras órdenes con el debido cuidado. La mahzma de Iclimia tiene 312 franjas mientras la de Tabessa tiene 309. Esa diferencia en el número total de franjas es suficiente para evitar cualquier confusión entre las hermanas gemelas. Al oír tales palabras, el sultán dio unas palmadas, hizo parar el baile y ordenó que un haquim contara una por una las franjas de los volantes de las bailarinas. El resultado confirmó el cálculo de Beremiz. La hermosa Iclimia tenía en el vestido 312 franjas, y su hermana Tabessa sólo tenía 309. -¡Mac Allah! exclamó el Califa. El jeque Iezid, pese a ser poeta, no exageró. Este Beremiz es realmente un calculador prodigioso. Contó todas las franjas de ambos vestidos mientras las bailarinas giraban vertiginosamente sobre el tablado. ¡Parece increíble! ¡Por Allah! Pero la envidia, cuando se apodera de un hombre, abre en su alma el camino a todos los sentimientos despreciables y torpes. Había en la corte de Al-Motacén un visir llamado Nahum-IbnNahum, hombre envidioso y malo. Viendo crecer ante el Califa el prestigio de Beremiz como onda de polvo erguida por el simún, aguijoneado por el despecho, deliberó poner en un aprieto a mi amigo y colocarlo en una situación ridícula y falsa. Así pues, se acercó al rey y dijo pronunciando lentamente las palabras: -Acabo de observar, ¡oh Emir de los Creyentes! que el calculador persa, nuestro huésped de esta tarde, es ilustre en contar elementos o figuras de una serie. Contó las quinientas y pico de palabras escritas en la pared del salón, citó los números amigos, habló de la diferencia -64 que es cubo y cuadrado- y acabó por contar una por una las franjas del vuelo del vestido de las bellas bailarinas. Malo sería si nuestros matemáticos se emplearan en cosas tan pueriles sin utilidad práctica de ningún tipo. Realmente ¿de qué nos sirve saber si en los versos que nos encantan hay 220 o 284 palabras? La preocupación de todos los que admiran a un poeta no es contar las letras de los versos o calcular el número de palabras negras o rojas de un poema. Tampoco, nos interesa saber si en el vestido de esta bella y graciosa bailarina hay 312, 319 o 1.000 franjas. Todo eso es ridículo y de muy limitado interés para los hombres de sentimiento que cultivan la belleza y el Arte. El ingenio humano, amparado por la ciencia, debe consagrarse a la resolución de los grandes problemas de la Vida. Los sabios -inspirados por Allah, el Exaltado - no alzaron el deslumbrante edificio de la Matemática para que esa noble ciencia viniera a tener la aplicación que le quiere atribuir este calculador persa. Me parece, pues, un crimen reducir la ciencia de Euclides, de Arquímedes o del maravilloso Omar Khayyam -¡Allah lo tenga en su gloria!- a esa mísera condición de evaluadora numérica de cosas y seres. Nos interesa, pues, ver si este calculador persa es capaz de aplicar las condiciones que dice poseer a la resolución de problemas de valor real, esto es, problemas que se relacionen con las necesidades y exigencias de la vida cotidiana. -Creo que estáis ligeramente equivocado, Señor Visir, respondió prontamente Beremiz, y me sentiría muy honrado si me permitierais aclarar ese insignificante equívoco, y para ello ruego al generoso Califa, nuestro amo y señor, que me conceda permiso para seguir dirigiéndole la palabra en este salón. -No deja de parecerme hasta cierto punto juiciosa, repuso el rey, la censura que acaba de hacerte el visir Nahum-Ibn-Nahum. Creo que es indispensable una aclaración sobre el caso. Habla, pues: tu palabra podrá orientar la opinión de los que aquí se hallan... En el salón se hizo un profundo silencio. Luego habló el calculador: -Los doctores y ulemas, ¡oh rey de los árabes!, no ignoran que la Matemática surgió con el despertar del alma humana. Pero no surgió con fines utilitarios. Fue el ansia de resolver el misterio del Universo lo que dio a esta ciencia su primer impulso. Su verdadero desarrollo resultó, pues, ante todo del esfuerzo de penetrar y comprender lo Infinito. Y aún hoy, después de habemos pasado siglos intentando en vano apartar el pesado velo, es la búsqueda del Infinito lo que nos hace avanzar. El progreso material de los hombres depende de las investigaciones abstractas o científicas del presente, y será a los hombres de ciencia, que trabajan para fines puramente científicos sin pensar en la aplicación práctica de sus doctrinas, a quienes deberá la Humanidad su desarrollo material en tiempos futuros. Beremiz hizo una pequeña pausa, y prosiguió luego con espiritual sonrisa: -Cuando el matemático efectúa sus cálculos o busca nuevas relaciones entre los números, no busca la verdad para fines utilitarios. Cultivar la ciencia por su utilidad práctica, inmediata, es desvirtuar el alma de la propia ciencia. La teoría estudiada hoy, y que nos parece inútil, tendrá quizá proyecciones inimaginadas en un futuro. ¿Quién podrá imaginar ese enigma en su proyección, a través de los siglos? ¿Quién podrá resolver la gran incógnita de los tiempos venideros desde la ecuación del presente? ¡Sólo Allah sabe la verdad! Y es posible que las investigaciones teóricas de hoy proporcionen dentro de mil o dos mil años, recursos preciosos para la práctica. Conviene no olvidar que la Matemática, aparte de su objetivo de resolver problemas, calcular áreas y medir volúmenes, tiene finalidades mucho más elevadas. Por tener tan alto valor en el desarrollo de la inteligencia y del raciocinio, la Matemática es uno de los caminos más seguros para llevar al hombre a sentir el poder del pensamiento, la magia del espíritu. La Matemática es, en fin, una de las verdades eternas, y, como tal, lleva a la elevación del espíritu, a la misma elevación que sentimos al contemplar los grandes espectáculos de la Naturaleza, a través de los cuales sentimos la presencia de Dios, Eterno y Omnipotente. Hay pues ¡oh ilustre visir Nahum-Ibn-Nahum! como ya dije, un pequeño error por vuestra parte. Cuento los versos de un poema, calculo la altura de una estrella, cuento el número de franjas de un vestido, mido el área de un país o la fuerza de un torrente, aplico en fin las fórmulas algebraicas y los principios geométricos, sin ocuparme del lucro que pueda resultar de mis cálculos y estudios. Sin el sueño y la fantasía, la ciencia se envilece. Es ciencia muerta. ¡Uassalam! Las palabras elocuentes de Beremiz impresionaron profundamente a los nobles y ulemas que rodeaban el trono. El rey se acercó al Calculador, le alzó la mano derecha y exclamó con decidida autoridad: -La teoría del científico soñador venció y vencerá siempre al oportunismo vulgar del ambicioso sin ideal filosófico. ¡Ke1imet-Quallah! Al oír tal sentencia, dictada por la justicia y por la razón, el rencoroso Nahum-lbn-Nahum se inclinó, dirigió un saludo al rey, y sin decir palabra se retiró cabizbajo del salón de las audiencias. Razón tenía el poeta al escribir: Deja volar alto la Fantasía; Sin ilusión, la vida ¿qué sería? CAPITULO XV Nuredin, el enviado, regresa al palacio del Califa. La información que obtuviera de un imán. Como vivía el pobre calígrafo. El cuadro lleno de números y el tablero de ajedrez. Beremiz habla sobre los cuadrados mágicos. La consulta del ulema. El califa pide a Beremiz que narre la leyenda del “Juego del ajedrez”. Nuredín no tuvo suerte en el desempeño de su comisión. El calígrafo que el rey, con tanto empeño, quería interrogar sobre el caso de los "números amigos", ya no se encontraba entre los muros de Bagdad. Al relatar las providencias que había tomado a fin de dar cumplimiento a la orden del Califa, el noble musulmán habló así: -Salí de este palacio acompañado de tres guardias en dirección a la mezquita de Otman -¡Allah la ennoblezca cada vez más!-. Me informó un viejo imán que cuida de la conservación del templo, que el hombre que buscaba había vivido realmente durante varios meses en una casa cercana. Pocos días antes, sin embargo, había salido hacia Basora con una caravana de vendedores de alfombras. Me dijo además que el calígrafo, cuyo nombre ignoraba, vivía solo y que raras veces dejaba el exiguo y modesto aposento en que vivía. Pensé que era prudente revisar la antigua vivienda del calígrafo pues quizá allí encontrara alguna indicación sobre el lugar a donde se había dirigido. La casa estaba abandonada desde el día en que la dejó su antiguo morador. Todo allí mostraba la más lamentable pobreza. Un lecho destrozado, colocado en un rincón, era todo el mobiliario. Había, sin embargo, sobre una tosca mesa de madera un tablero de ajedrez con algunas piezas de este noble juego, y en la pared un cuadro lleno de números. Encontré extraño que un hombre tan paupérrimo, que arrastraba una vida llena de privaciones, cultivara el juego del ajedrez y adornara las paredes con figuras formadas con expresiones matemáticas. Decidí traer conmigo el tablero y el cuadrado numérico para que nuestros dignos ulemas puedan observar esas reliquias dejadas por el viejo calígrafo. El sultán, presa de vivo interés sobre el caso, mandó que Beremiz examinase con la debida atención el tablero y la figura, que más parecía trabajo de un discípulo de Al-Kharismi, que adorno para el cuarto de un pobre calígrafo. Después de observar minuciosamente ambos objetos el Hombre que Calculaba, dijo: -Esta interesante figura numérica hallada en el cuarto abandonado del calígrafo, constituye lo que llamamos un "cuadrado mágico". Tomemos un cuadrado y dividámoslo en 4, 9 o 16 cuadros iguales, que llamaremos "casillas". Cuadro mágico de nueve casillas. La suma de los números de cada una de estas casillas que forman una columna, hilera o diagonal, es siempre quince. En cada una de esas casillas coloquemos un número entero. La figura obtenida será un cuadrado mágico cuando la suma de los números que figuran en una columna, en una línea o en cualquiera de las diagonales, sea siempre la misma. Este resultado invariable es denominado "constante" del cuadrado y el número de casillas de una línea es el módulo del cuadrado. Los números que ocupan las diferentes casillas del cuadrado mágico deben ser todos diferentes y tomados en el orden natural. Es oscuro el origen de los cuadrados mágicos. Se cree que la construcción de estas figuras constituía ya en la época remota un pasatiempo que captaba la atención de gran número de curiosos. Como los antiguos atribuían a ciertos números propiedades cabalísticas, era muy natural que vieran virtudes mágicas en la especial característica de estos cuadrados. Los matemáticos chinos que vivieron 45 siglos antes de Mahoma, ya conocían los cuadrados mágicos. El cuadrado mágico con 4 casillas no se puede construir. En la India, muchos usaban el cuadrado mágico como amuleto. Un sabio del Yemen afirmaba que los cuadrados mágicos servían para prevenir ciertas enfermedades. Un cuadrado mágico de plata, colgado al cuello, evitaba según ciertas tribus el contagio de la peste. Los antiguos Magos de Persia, que también ejercían la medicina, pretendieron curar las enfermedades aplicando a la parte enferma un cuadro mágico, siguiendo el conocido principio: "Primum non nocere" o sea: primer principio, no dañar. Sin embargo, es en el terreno de la Matemática donde el cuadrado mágico constituye una curiosa particularidad. Cuando un cuadrado mágico presenta ciertas propiedades, como, por ejemplo, ser susceptible de descomposición en varios cuadrados mágicos, lleva el nombre de hipermágico. Entre los cuadrados hipermágicos podemos citar los diabólicos. Así se denominan los cuadrados que continúan siendo mágicos cuando trasladamos una columna que se halla a la derecha hacia la izquierda o cuando pasamos una línea de abajo arriba. Cuadro mágico de dieciséis casillas que los matemáticos denominan "diabólico”. La constante "treinta y cuatro" de este cuadro mágico, no solamente se obtiene sumando los números de una misma columna, hilera o diagonal sino también sumando de otras maneras cuatro números del mismo cuadro: 4 + 5 + 11 + 14 = 34; 1 + 11 + 16 + 6 = 34 4 + 9 + 6 + 15 = 34; 10 + 13 + 7 + 4 = 34 y así de ochenta y seis modos diferentes. Las indicaciones dadas por Beremiz sobre los cuadrados mágicos fueron oídas con la mayor atención por el rey y por los nobles musulmanes. Un viejo ulema de ojos claros y nariz achatada, pero risueño y simpático, después de dirigir palabras elogiosas al "eminente Beremiz Samir, del país del Irán", declaró que deseaba hacer una consulta al sabio calculador. La consulta del ulema era la siguiente: -¿Serla posible a un geómetra calcular la relación exacta entre una circunferencia y su diámetro? En otras palabras: "¿Cuántas veces una circunferencia contiene a su diámetro?" La respuesta a esta pregunta fue formulada por el Calculador en los siguientes términos: -No es posible obtener la medida exacta de una circunferencia ni siquiera cuando conocemos su diámetro. De esta medida debería resultar un número, pero el verdadero valor de este número lo ignoran los geómetras. Creían los antiguos astrólogos que la circunferencia era tres veces su diámetro. Pero eso no era cierto. El griego Arquímedes encontró que, midiendo 22 codos la circunferencia, su diámetro debería medir aproximadamente 7 codos. Tal número resultaría así de la división de 22 por 7. Los matemáticos hindúes no están de acuerdo con este cálculo, y el gran Al-Kharismi afirmó que la regla de Arquímedes, en la vida práctica, está muy lejos de ser verdadera. Y Beremiz concluyó dirigiéndose al ulema de nariz achatada: -Dicho número parece envolver un alto misterio por estar dotado de atributos que sólo Allah podrá revelar. Seguidamente el brillante calculador tomó el tablero de ajedrez y dijo dirigiéndose al rey: -Este viejo tablero, dividido en 54 casillas negras y blancas se emplea, como sabéis, en el interesante juego que un hindú llamado Lahur Sessa inventó hace muchos siglos para entretener a un rey de la India. El descubrimiento del juego de ajedrez se halla ligado a una leyenda que envuelve cálculos, números y notables enseñanzas. -¡Será interesante oírlo!, interrumpió el Califa. ¡Deseo conocerla! -Escucho y obedezco, respondió Beremiz. Y narró la historia que transcribimos en el siguiente capítulo
No hay comentarios:
Publicar un comentario